Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Biol Int ; 46(9): 1320-1344, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35830711

RESUMEN

Immune-mediated diseases (IMDs) are chronic conditions that have an immune-mediated etiology. Clinically, these diseases appear to be unrelated, but pathogenic pathways have been shown to connect them. While inflammation is a common occurrence in the body, it may either stimulate a favorable immune response to protect against harmful signals or cause illness by damaging cells and tissues. Nanomedicine has tremendous promise for regulating inflammation and treating IMIDs. Various nanoparticles coated with nanotherapeutics have been recently fabricated for effective targeted delivery to inflammatory tissues. RNA interference (RNAi) offers a tremendous genetic approach, particularly if traditional treatments are ineffective against IMDs. In cells, several signaling pathways can be suppressed by using RNAi, which blocks the expression of particular messenger RNAs. Using this molecular approach, the undesirable effects of anti-inflammatory medications can be reduced. Still, there are many problems with using short-interfering RNAs (siRNAs) to treat IMDs, including poor localization of the siRNAs in target tissues, unstable gene expression, and quick removal from the blood. Nanotherapeutics have been widely used in designing siRNA-based carriers because of the restricted therapy options for IMIDs. In this review, we have discussed recent trends in the fabrication of siRNA nanodelivery systems, including lipid-based siRNA nanocarriers, liposomes, and cationic lipids, stable nucleic acid-lipid particles, polymeric-based siRNA nanocarriers, polyethylenimine (PEI)-based nanosystems, chitosan-based nanoformulations, inorganic material-based siRNA nanocarriers, and hybrid-based delivery systems. We have also introduced novel siRNA-based nanocarriers to control IMIDs, such as pulmonary inflammation, psoriasis, inflammatory bowel disease, ulcerative colitis, rheumatoid arthritis, etc. This study will pave the way for new avenues of research into the diagnosis and treatment of IMDs.


Asunto(s)
Nanomedicina , Nanopartículas , Humanos , Inflamación/genética , Inflamación/terapia , Lípidos , Nanopartículas/uso terapéutico , Interferencia de ARN , ARN Interferente Pequeño/genética
2.
Microvasc Res ; 133: 104073, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32949575

RESUMEN

In this study, the angiogenic capacity of human endothelial cells was studied after being plated on the surface of polyurethane-poly caprolactone (PU/PCL) scaffolds for 72 h. In this study, cells were designated into five different groups, including PU, PU/PCL (2:1), PU/PCL (1:1); PU/PCL (1:2); and PCL. Data revealed that the PU/PCL (2:1) composition had a higher modulus and breakpoint in comparison with the other groups (p < 0.05). Compared to the other groups, the PU/PCL scaffold with a molar ratio of 2:1 had lower the contact angle θ and higher tensile stress (p < 0.05). The mean size of the PU nanofibers was reduced after the addition of PCL (p < 0.05). Based on our data, the culture of endothelial cells on the surface of PU/PCL (2:1) did not cause nitrosative stress and cytotoxic effects under static conditions compared to cells plated on a conventional plastic surface (p > 0.05). Based on data from the static condition, we fabricated a tubular PU/PCL (2:1) construct for six-day dynamic cell culture inside loop air-lift bioreactors. Scanning electron microscopy showed the attachment of endothelial cells to the luminal surface of the PU/PCL scaffold. Cells were flattened and aligned under the culture medium flow. Immunofluorescence imaging showed the attachment of cells to the luminal surface indicated by blue nuclei on the luminal surface. These data demonstrated that the application of PU/PCL substrate could stimulate endothelial cells activity under static and dynamic conditions.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/fisiología , Nanofibras , Poliésteres/química , Poliuretanos/química , Andamios del Tejido , Reactores Biológicos , Adhesión Celular , Técnicas de Cultivo de Célula , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Módulo de Elasticidad , Células Endoteliales de la Vena Umbilical Humana/ultraestructura , Humanos , Resistencia a la Tracción , Factores de Tiempo
3.
Stem Cell Res Ther ; 14(1): 68, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-37024981

RESUMEN

Bone defects are among the most common damages in human medicine. Due to limitations and challenges in the area of bone healing, the research field has turned into a hot topic discipline with direct clinical outcomes. Among several available modalities, scaffold-free cell sheet technology has opened novel avenues to yield efficient osteogenesis. It is suggested that the intact matrix secreted from cells can provide a unique microenvironment for the acceleration of osteoangiogenesis. To the best of our knowledge, cell sheet technology (CST) has been investigated in terms of several skeletal defects with promising outcomes. Here, we highlighted some recent advances associated with the application of CST for the recovery of craniomaxillofacial (CMF) in various preclinical settings. The regenerative properties of both single-layer and multilayer CST were assessed regarding fabrication methods and applications. It has been indicated that different forms of cell sheets are available for CMF engineering like those used for other hard tissues. By tackling current challenges, CST is touted as an effective and alternative therapeutic option for CMF bone regeneration.


Asunto(s)
Células Madre Mesenquimatosas , Ingeniería de Tejidos , Humanos , Osteogénesis , Regeneración Ósea , Andamios del Tejido
4.
J Biol Eng ; 13: 83, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31737091

RESUMEN

Attention has recently increased in the application of electrospun fibers because of their putative capability to create nanoscale platforms toward tissue engineering. To some extent, electrospun fibers are applicable to the extracellular matrix by providing a three-dimensional microenvironment in which cells could easily acquire definite functional shape and maintain the cell-to-cell connection. It is noteworthy to declare that placement in different electrospun substrates with appropriate physicochemical properties enables cells to promote their bioactivities, dynamics growth and differentiation, leading to suitable restorative effects. This review paper aims to highlight the application of biomaterials in engineered vascular grafts by using electrospun nanofibers to promote angiogenesis and neovascularization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA