Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Bioorg Med Chem Lett ; 28(11): 2050-2054, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29748053

RESUMEN

A series of diaryl ethers were designed and synthesized to discern the structure activity relationships against the two closely related mono-(ADP-ribosyl)transferases PARP10 and PARP14. Structure activity studies identified 8b as a sub-micromolar inhibitor of PARP10 with ∼15-fold selectivity over PARP14. In addition, 8k and 8m were discovered to have sub-micromolar potency against PARP14 and demonstrated moderate selectivity over PARP10. A crystal structure of the complex of PARP14 and 8b shows binding of the compound in a novel hydrophobic pocket and explains both potency and selectivity over other PARP family members. In addition, 8b, 8k and 8m also demonstrate selectivity over PARP1. Together, this study identified novel, potent and metabolically stable derivatives to use as chemical probes for these biologically interesting therapeutic targets.


Asunto(s)
Amidas/farmacología , Diseño de Fármacos , Éteres/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Amidas/síntesis química , Amidas/química , Relación Dosis-Respuesta a Droga , Éteres/síntesis química , Éteres/química , Humanos , Estructura Molecular , Inhibidores de Poli(ADP-Ribosa) Polimerasas/síntesis química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Proteínas Proto-Oncogénicas/metabolismo , Relación Estructura-Actividad
2.
Bioorg Med Chem Lett ; 27(13): 2907-2911, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28495083

RESUMEN

A series of (Z)-4-(3-carbamoylphenylamino)-4-oxobut-2-enyl amides were synthesized and tested for their ability to inhibit the mono-(ADP-ribosyl)transferase, PARP14 (a.k.a. BAL-2; ARTD-8). Two synthetic routes were established for this series and several compounds were identified as sub-micromolar inhibitors of PARP14, the most potent of which was compound 4t, IC50=160nM. Furthermore, profiling other members of this series identified compounds with >20-fold selectivity over PARP5a/TNKS1, and modest selectivity over PARP10, a closely related mono-(ADP-ribosyl)transferase.


Asunto(s)
Diseño de Fármacos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Estructura Molecular , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Relación Estructura-Actividad
3.
Angew Chem Int Ed Engl ; 56(1): 248-253, 2017 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-27918638

RESUMEN

Poly(ADP-ribose) polymerases (PARPs) are key enzymes in a variety of cellular processes. Most small-molecule PARP inhibitors developed to date have been against PARP1, and suffer from poor selectivity. PARP14 has recently emerged as a potential therapeutic target, but its inhibitor development has trailed behind. Herein, we describe a small molecule microarray-based strategy for high-throughput synthesis, screening of >1000 potential bidentate inhibitors of PARPs, and the successful discovery of a potent PARP14 inhibitor H10 with >20-fold selectivity over PARP1. Co-crystallization of the PARP14/H10 complex indicated H10 bound to both the nicotinamide and the adenine subsites. Further structure-activity relationship studies identified important binding elements in the adenine subsite. In tumor cells, H10 was able to chemically knockdown endogenous PARP14 activities.


Asunto(s)
Descubrimiento de Drogas , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Ensayos Analíticos de Alto Rendimiento , Humanos , Análisis por Micromatrices , Inhibidores de Poli(ADP-Ribosa) Polimerasas/síntesis química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
4.
J Biol Chem ; 290(12): 7336-44, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25635049

RESUMEN

The mammalian poly(ADP-ribose) polymerase (PARP) family includes ADP-ribosyltransferases with diphtheria toxin homology (ARTD). Most members have mono-ADP-ribosyltransferase activity. PARP13/ARTD13, also called zinc finger antiviral protein, has roles in viral immunity and microRNA-mediated stress responses. PARP13 features a divergent PARP homology domain missing a PARP consensus sequence motif; the domain has enigmatic functions and apparently lacks catalytic activity. We used x-ray crystallography, molecular dynamics simulations, and biochemical analyses to investigate the structural requirements for ADP-ribosyltransferase activity in human PARP13 and two of its functional partners in stress granules: PARP12/ARTD12, and PARP15/BAL3/ARTD7. The crystal structure of the PARP homology domain of PARP13 shows obstruction of the canonical active site, precluding NAD(+) binding. Molecular dynamics simulations indicate that this closed cleft conformation is maintained in solution. Introducing consensus side chains in PARP13 did not result in 3-aminobenzamide binding, but in further closure of the site. Three-dimensional alignment of the PARP homology domains of PARP13, PARP12, and PARP15 illustrates placement of PARP13 residues that deviate from the PARP family consensus. Introducing either one of two of these side chains into the corresponding positions in PARP15 abolished PARP15 ADP-ribosyltransferase activity. Taken together, our results show that PARP13 lacks the structural requirements for ADP-ribosyltransferase activity.


Asunto(s)
ADP Ribosa Transferasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Dedos de Zinc , Secuencia de Aminoácidos , Cristalografía por Rayos X , Humanos , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , NAD/metabolismo , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/genética , Homología de Secuencia de Aminoácido
5.
Proc Natl Acad Sci U S A ; 109(20): 7705-10, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22538822

RESUMEN

Besides thriving on altered glucose metabolism, cancer cells undergo glutaminolysis to meet their energy demands. As the first enzyme in catalyzing glutaminolysis, human kidney-type glutaminase isoform (KGA) is becoming an attractive target for small molecules such as BPTES [bis-2-(5 phenylacetamido-1, 2, 4-thiadiazol-2-yl) ethyl sulfide], although the regulatory mechanism of KGA remains unknown. On the basis of crystal structures, we reveal that BPTES binds to an allosteric pocket at the dimer interface of KGA, triggering a dramatic conformational change of the key loop (Glu312-Pro329) near the catalytic site and rendering it inactive. The binding mode of BPTES on the hydrophobic pocket explains its specificity to KGA. Interestingly, KGA activity in cells is stimulated by EGF, and KGA associates with all three kinase components of the Raf-1/Mek2/Erk signaling module. However, the enhanced activity is abrogated by kinase-dead, dominant negative mutants of Raf-1 (Raf-1-K375M) and Mek2 (Mek2-K101A), protein phosphatase PP2A, and Mek-inhibitor U0126, indicative of phosphorylation-dependent regulation. Furthermore, treating cells that coexpressed Mek2-K101A and KGA with suboptimal level of BPTES leads to synergistic inhibition on cell proliferation. Consequently, mutating the crucial hydrophobic residues at this key loop abrogates KGA activity and cell proliferation, despite the binding of constitutive active Mek2-S222/226D. These studies therefore offer insights into (i) allosteric inhibition of KGA by BPTES, revealing the dynamic nature of KGA's active and inhibitory sites, and (ii) cross-talk and regulation of KGA activities by EGF-mediated Raf-Mek-Erk signaling. These findings will help in the design of better inhibitors and strategies for the treatment of cancers addicted with glutamine metabolism.


Asunto(s)
Glutaminasa/metabolismo , Riñón/enzimología , Modelos Moleculares , Conformación Proteica , Transducción de Señal/fisiología , Sulfuros/metabolismo , Tiadiazoles/metabolismo , Regulación Alostérica/fisiología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cristalografía , Glutaminasa/química , Humanos , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/genética , Sistema de Señalización de MAP Quinasas/fisiología , Mutación/genética , Fosforilación , Unión Proteica , Proteínas Proto-Oncogénicas c-raf/genética , Proteínas Proto-Oncogénicas c-raf/metabolismo , Sulfuros/farmacología , Tiadiazoles/farmacología
6.
J Biol Chem ; 287(29): 24077-81, 2012 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-22661712

RESUMEN

ADP-ribosylation is involved in the regulation of DNA repair, transcription, and other processes. The 18 human ADP-ribose transferases with diphtheria toxin homology include ARTD1/PARP1, a cancer drug target. Knowledge of other family members may guide therapeutics development and help evaluate potential drug side effects. Here, we present the crystal structure of human ARTD15/PARP16, a previously uncharacterized enzyme. ARTD15 features an α-helical domain that packs against its transferase domain without making direct contact with the NAD(+)-binding crevice or the donor loop. Thus, this novel domain does not resemble the regulatory domain of ARTD1. ARTD15 displays auto-mono(ADP-ribosylation) activity and is affected by canonical poly(ADP-ribose) polymerase inhibitors. These results add to a framework that will facilitate research on a medically important family of enzymes.


Asunto(s)
Cristalografía por Rayos X/métodos , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/metabolismo , Secuencia de Aminoácidos , Humanos , Datos de Secuencia Molecular , Poli(ADP-Ribosa) Polimerasas/genética , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Homología de Secuencia de Aminoácido
7.
J Biol Chem ; 285(11): 8054-60, 2010 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-20064938

RESUMEN

The PARP-3 protein is closely related to the PARP-1 and PARP-2 proteins, which are involved in DNA repair and genome maintenance. Here, we characterized the biochemical properties of human PARP-3. PARP-3 is able to ADP-ribosylate itself as well as histone H1, a previously unknown substrate for PARP-3. PARP-3 is not activated upon binding to DNA and is a mono-ADP-ribosylase, in contrast to PARP-1 and PARP-2. PARP-3 interacts with PARP-1 and activates PARP-1 in the absence of DNA, resulting in synthesis of polymers of ADP-ribose. The N-terminal WGR domain of PARP-3 is involved in this activation. The functional interaction between PARP-3 and PARP-1 suggests that it may have a role in DNA repair. However, here we report that PARP-3 small interfering RNA-depleted cells are not sensitive to the topoisomerase I poison camptothecin, inducing DNA single-strand breaks, and repair these lesions as efficiently as wild-type cells. Altogether, these results suggest that the interaction between PARP-1 and PARP-3 is unrelated to DNA single-strand break repair.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Cadena Simple , Reparación del ADN/fisiología , Poli(ADP-Ribosa) Polimerasas/metabolismo , 3-Yodobencilguanidina/farmacología , Camptotecina/farmacología , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , ADN/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , Inhibidores Enzimáticos/farmacología , Histonas/metabolismo , Humanos , Hidrólisis , Hidroxilamina/farmacología , Cloruro de Mercurio/farmacología , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/genética , Estructura Terciaria de Proteína , ARN Interferente Pequeño/metabolismo , Inhibidores de Topoisomerasa I
8.
J Biol Inorg Chem ; 16(2): 235-42, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21052751

RESUMEN

Ferrochelatase catalyzes the insertion of Fe(2+) into protoporphyrin IX. The enzymatic product heme (protoheme IX) is a well-known cofactor in a wide range of proteins. The insertion of metal ions other than Fe(2+) occurs rarely in vivo, but all ferrochelatases that have been studied can insert Zn(2+) at a good rate in vitro. Co(2+), but not Cu(2+), is known to be a good substrate of the mammalian and Saccharomyces cerevisiae ferrochelatases. In contrast, Cu(2+), but not Co(2+), has been found to be a good substrate of bacterial Bacillus subtilis ferrochelatase. It is not known how ferrochelatase discriminates between different metal ion substrates. Structural analysis of B. subtilis ferrochelatase has shown that Tyr13 is an indirect ligand of Fe(2+) and a direct ligand of a copper mesoporphyrin product. A structure-based comparison revealed that Tyr13 aligns with a Met residue in the S. cerevisiae and human ferrochelatases. Tyr13 was changed to Met in the B. subtilis enzyme by site-directed mutagenesis. Enzymatic measurements showed that the modified enzyme inserted Co(2+) at a higher rate than the wild-type B. subtilis ferrochelatase, but it had lost the ability to use Cu(2+) as a substrate. Thus, the B. subtilis Tyr13Met ferrochelatase showed the same metal specificity as that of the ferrochelatases from S. cerevisiae and human.


Asunto(s)
Bacillus subtilis/enzimología , Ferroquelatasa/química , Ferroquelatasa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cobalto/metabolismo , Cobre/metabolismo , Ferroquelatasa/genética , Mutagénesis Sitio-Dirigida , Relación Estructura-Actividad , Especificidad por Sustrato , Tirosina/química , Tirosina/genética , Tirosina/metabolismo
9.
Nat Commun ; 12(1): 1296, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637753

RESUMEN

Despite the immense importance of enzyme-substrate reactions, there is a lack of general and unbiased tools for identifying and prioritizing substrate proteins that are modified by the enzyme on the structural level. Here we describe a high-throughput unbiased proteomics method called System-wide Identification and prioritization of Enzyme Substrates by Thermal Analysis (SIESTA). The approach assumes that the enzymatic post-translational modification of substrate proteins is likely to change their thermal stability. In our proof-of-concept studies, SIESTA successfully identifies several known and novel substrate candidates for selenoprotein thioredoxin reductase 1, protein kinase B (AKT1) and poly-(ADP-ribose) polymerase-10 systems. Wider application of SIESTA can enhance our understanding of the role of enzymes in homeostasis and disease, opening opportunities to investigate the effect of post-translational modifications on signal transduction and facilitate drug discovery.


Asunto(s)
Enzimas/química , Enzimas/metabolismo , Procesamiento Proteico-Postraduccional , Carcinoma , Descubrimiento de Drogas , Enzimas/genética , Células HCT116 , Humanos , Espectrometría de Masas , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Proteómica/métodos , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt/química , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especificidad por Sustrato , Tiorredoxina Reductasa 1/química , Tiorredoxina Reductasa 1/genética
10.
Biochemistry ; 49(6): 1056-8, 2010 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-20092359

RESUMEN

Poly-ADP-ribose polymerases (PARPs) catalyze transfer of ADP-ribose from NAD(+) to specific residues in their substrate proteins or to growing ADP-ribose chains. PARP activity is involved in processes such as chromatin remodeling, transcription control, and DNA repair. Inhibitors of PARP activity may be useful in cancer therapy. PARP2 is the family member that is most similar to PARP1, and the two can act together as heterodimers. We used X-ray crystallography to determine two structures of the catalytic domain of human PARP2: the complexes with PARP inhibitors 3-aminobenzamide and ABT-888. These results contribute to our understanding of structural features and compound properties that can be employed to develop selective inhibitors of human ADP-ribosyltransferases.


Asunto(s)
Bencimidazoles/química , Dominio Catalítico , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas/química , Animales , Benzamidas/química , Dominio Catalítico/efectos de los fármacos , Proteínas de Ciclo Celular/química , Cristalización , Cristalografía por Rayos X , Ácido Glutámico/química , Humanos , Enlace de Hidrógeno/efectos de los fármacos , Ratones , Poli(ADP-Ribosa) Polimerasa-1 , Estructura Secundaria de Proteína/efectos de los fármacos
11.
Nat Commun ; 11(1): 5199, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060572

RESUMEN

Protein ADP-ribosylation is a reversible post-translational modification that regulates important cellular functions. The identification of modified proteins has proven challenging and has mainly been achieved via enrichment methodologies. Random mutagenesis was used here to develop an engineered Af1521 ADP-ribose binding macro domain protein with 1000-fold increased affinity towards ADP-ribose. The crystal structure reveals that two point mutations K35E and Y145R form a salt bridge within the ADP-ribose binding domain. This forces the proximal ribose to rotate within the binding pocket and, as a consequence, improves engineered Af1521 ADPr-binding affinity. Its use in our proteomic ADP-ribosylome workflow increases the ADP-ribosylated protein identification rates and yields greater ADP-ribosylome coverage. Furthermore, generation of an engineered Af1521 Fc fusion protein confirms the improved detection of cellular ADP-ribosylation by immunoblot and immunofluorescence. Thus, this engineered isoform of Af1521 can also serve as a valuable tool for the analysis of cellular ADP-ribosylation under in vivo conditions.


Asunto(s)
ADP-Ribosilación/fisiología , Adenosina Difosfato Ribosa/metabolismo , Ingeniería de Proteínas/métodos , Proteínas/metabolismo , Adenosina Difosfato Ribosa/química , Adenosina Difosfato Ribosa/genética , Sitios de Unión , Proteínas Portadoras/genética , Proteínas Portadoras/aislamiento & purificación , Proteínas Portadoras/metabolismo , Células HEK293 , Células HeLa , Humanos , Modelos Moleculares , Mutagénesis , Conformación Proteica , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Proteínas/química , Proteínas/aislamiento & purificación , Proteómica/métodos
12.
J Mol Biol ; 372(1): 150-9, 2007 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-17631897

RESUMEN

DExD-box helicases are involved in all aspects of cellular RNA metabolism. Conserved domains 1 and 2 contain nine signature motifs that are responsible for nucleotide binding, RNA binding and ATP hydrolysis. The human DEAD-box helicase DDX3X has been associated with several different cellular processes, such as cell-growth control, mRNA transport and translation, and is suggested to be essential for the export of unspliced/partially spliced HIV mRNAs from the nucleus to the cytoplasm. Here, the crystal structure of conserved domains 1 and 2 of DDX3X, including a DDX3-specific insertion that is not generally found in human DExD-box helicases, is presented. The N-terminal domain 1 and the C-terminal domain 2 both display RecA-like folds comprising a central beta-sheet flanked by alpha-helices. Interestingly, the DDX3X-specific insertion forms a helical element that extends a highly positively charged sequence in a loop, thus increasing the RNA-binding surface of the protein. Surprisingly, although DDX3X was crystallized in the presence of a large excess of ADP or the slowly hydrolyzable ATP analogue ATPgammaS the contaminant AMP was seen in the structure. A fluorescent-based stability assay showed that the thermal stability of DDX3X was increased by the mononucleotide AMP but not by ADP or ATPgammaS, suggesting that DDX3X is stabilized by AMP and elucidating why AMP was found in the nucleotide-binding pocket.


Asunto(s)
Adenosina Monofosfato/química , Adenosina Monofosfato/metabolismo , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Estabilidad de Enzimas , Humanos , Hidrólisis , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Homología de Secuencia de Aminoácido
13.
Structure ; 14(10): 1535-46, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17027502

RESUMEN

Defects in the mitochondrial protein frataxin are responsible for Friedreich ataxia, a neurodegenerative and cardiac disease that affects 1:40,000 children. Here, we present the crystal structures of the iron-free and iron-loaded frataxin trimers, and a single-particle electron microscopy reconstruction of a 24 subunit oligomer. The structures reveal fundamental aspects of the frataxin mechanism. The trimer has a central channel in which one atom of iron binds. Two conformations of the channel with different metal-binding affinities suggest that a gating mechanism controls whether the bound iron is delivered to other proteins or transferred to detoxification sites. The trimer constitutes the basic structural unit of the 24 subunit oligomer. The architecture of this oligomer and several features of the trimer structure demonstrate striking similarities to the iron-storage protein ferritin. The data reveal how stepwise assembly provides frataxin with the structural flexibility to perform two functions: metal delivery and detoxification.


Asunto(s)
Proteínas de Unión a Hierro/química , Hierro/metabolismo , Proteínas Mitocondriales/química , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Transporte Biológico , Cristalografía por Rayos X , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Microscopía Electrónica , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Mutación , Unión Proteica , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Frataxina
14.
Cell Chem Biol ; 25(12): 1547-1553.e12, 2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-30344052

RESUMEN

Poly-ADP-ribose polymerases (PARPs1-16) play pivotal roles in diverse cellular processes. PARPs that catalyze poly-ADP-ribosylation (PARylation) are the best characterized PARP family members because of the availability of potent and selective inhibitors for these PARPs. There has been comparatively little success in developing selective small-molecule inhibitors of PARPs that catalyze mono-ADP-ribosylation (MARylation), limiting our understanding of the cellular role of MARylation. Here we describe the structure-guided design of inhibitors of PARPs that catalyze MARylation. The most selective analog, ITK7, potently inhibits the MARylation activity of PARP11, a nuclear envelope-localized PARP. ITK7 is greater than 200-fold selective over other PARP family members. Using live-cell imaging, we show that ITK7 causes PARP11 to dissociate from the nuclear envelope. These results suggest that the cellular localization of PARP11 is regulated by its catalytic activity.


Asunto(s)
Biocatálisis/efectos de los fármacos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Quinazolinonas/farmacología , Células HeLa , Humanos , Estructura Molecular , Inhibidores de Poli(ADP-Ribosa) Polimerasas/síntesis química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Transporte de Proteínas/efectos de los fármacos , Quinazolinonas/síntesis química , Quinazolinonas/química
15.
Nat Commun ; 9(1): 3785, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-30224724

RESUMEN

Pseudomonas are a common cause of hospital-acquired infections that may be lethal. ADP-ribosyltransferase activities of Pseudomonas exotoxin-S and -T depend on 14-3-3 proteins inside the host cell. By binding in the 14-3-3 phosphopeptide binding groove, an amphipathic C-terminal helix of ExoS and ExoT has been thought to be crucial for their activation. However, crystal structures of the 14-3-3ß:ExoS and -ExoT complexes presented here reveal an extensive hydrophobic interface that is sufficient for complex formation and toxin activation. We show that C-terminally truncated ExoS ADP-ribosyltransferase domain lacking the amphipathic binding motif is active when co-expressed with 14-3-3. Moreover, swapping the amphipathic C-terminus with a fragment from Vibrio Vis toxin creates a 14-3-3 independent toxin that ADP-ribosylates known ExoS targets. Finally, we show that 14-3-3 stabilizes ExoS against thermal aggregation. Together, this indicates that 14-3-3 proteins activate exotoxin ADP-ribosyltransferase domains by chaperoning their hydrophobic surfaces independently of the amphipathic C-terminal segment.


Asunto(s)
Proteínas 14-3-3/química , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/metabolismo , Proteínas 14-3-3/metabolismo , ADP Ribosa Transferasas/genética , Toxinas Bacterianas/genética , Sitios de Unión , Cristalografía por Rayos X , Escherichia coli/genética , Proteínas Activadoras de GTPasa/genética , Interacciones Huésped-Patógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Conformación Proteica , Dominios Proteicos , Pseudomonas aeruginosa/patogenicidad , Saccharomyces cerevisiae/genética
16.
J Med Chem ; 60(4): 1262-1271, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28001384

RESUMEN

Selective inhibitors could help unveil the mechanisms by which inhibition of poly(ADP-ribose) polymerases (PARPs) elicits clinical benefits in cancer therapy. We profiled 10 clinical PARP inhibitors and commonly used research tools for their inhibition of multiple PARP enzymes. We also determined crystal structures of these compounds bound to PARP1 or PARP2. Veliparib and niraparib are selective inhibitors of PARP1 and PARP2; olaparib, rucaparib, and talazoparib are more potent inhibitors of PARP1 but are less selective. PJ34 and UPF1069 are broad PARP inhibitors; PJ34 inserts a flexible moiety into hydrophobic subpockets in various ADP-ribosyltransferases. XAV939 is a promiscuous tankyrase inhibitor and a potent inhibitor of PARP1 in vitro and in cells, whereas IWR1 and AZ-6102 are tankyrase selective. Our biochemical and structural analysis of PARP inhibitor potencies establishes a molecular basis for either selectivity or promiscuity and provides a benchmark for experimental design in assessment of PARP inhibitor effects.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Tanquirasas/antagonistas & inhibidores , Animales , Bencimidazoles/química , Bencimidazoles/farmacología , Células HEK293 , Humanos , Indazoles/química , Indazoles/farmacología , Modelos Moleculares , Fenantrenos/química , Fenantrenos/farmacología , Ftalazinas/química , Ftalazinas/farmacología , Piperazinas/química , Piperazinas/farmacología , Piperidinas/química , Piperidinas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Tanquirasas/metabolismo
17.
J Mol Biol ; 352(5): 1081-90, 2005 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-16140324

RESUMEN

Insertion of metals into various tetrapyrroles is catalysed by a group of enzymes called chelatases, e.g. nickel, cobalt, magnesium and ferro-chelatase. It has been proposed that catalytic metallation includes distorting the porphyrin substrate by the enzyme towards a transition state-like geometry in which at least one of the pyrrole rings will be available for metal chelation. Here, we present a study of metal insertion into the transition-state inhibitor of protoporphyrin IX ferrochelatase, N-methyl mesoporphyrin (N-MeMP), by time-resolved crystallography and mass spectrometry with and without the presence of ferrochelatase. The results show that metallation of N-MeMP has a very limited effect on the conformation of the residues that participate in porphyrin and metal binding. These findings support theoretical data, which indicate that product release is controlled largely by the strain created by metal insertion into the distorted porphyrin. The results suggest that, similar to non-catalytic metallation of N-MeMP, the ferrochelatase-assisted metallation depends on the ligand exchange rate for the respective metal. Moreover, ferrochelatase catalyses insertion of Cu(II) and Zn(II) into N-MeMP with a rate that is about 20 times faster than non-enzymatic metallation in solution, suggesting that the catalytic strategy of ferrochelatase includes a stage of acceleration of the rate of ligand exchange for the metal substrate. The greater efficiency of N-MeMP metallation by Cu(II), as compared to Zn(II), contrasts with the K(m) values for Zn(II) (17 microM) and Cu(II) (170 microM) obtained for metallation of protoporphyrin IX. We suggest that this difference in metal specificity depends on the type of distortion imposed by the enzyme on protoporphyrin IX, which is different from the intrinsic non-planar distortion of N-MeMP. A mechanism of control of metal specificity by porphyrin distortion may be general for different chelatases, and may have common features with the mechanism of metal specificity in crown ethers.


Asunto(s)
Cobre/metabolismo , Ferroquelatasa/química , Ferroquelatasa/fisiología , Mesoporfirinas/metabolismo , Bacillus subtilis/enzimología , Catálisis , Cobre/química , Cristalografía por Rayos X , Escherichia coli , Ferroquelatasa/antagonistas & inhibidores , Ferroquelatasa/genética , Espectrometría de Masas , Mesoporfirinas/química , Mutación , Estructura Terciaria de Proteína
18.
Structure ; 24(5): 789-796, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27112597

RESUMEN

Sister chromatid cohesion, formed by the cohesin protein complex, is essential for chromosome segregation. In order for cohesion to be established, the cohesin subunit SMC3 needs to be acetylated by a homolog of the ESCO1/Eco1 acetyltransferases, the enzymatic mechanism of which has remained unknown. Here we report the crystal structure of the ESCO1 acetyltransferase domain in complex with acetyl-coenzyme A, and show by SAXS that ESCO1 is a dimer in solution. The structure reveals an active site that lacks a potential catalytic base side chain. However, mutation of glutamate 789, a surface residue that is close to the automodification target lysine 803, strongly reduces autoacetylation of ESCO1. Moreover, budding yeast Smc3 mutated at the conserved residue D114, adjacent to the cohesion-activating acetylation site K112,K113, cannot be acetylated in vivo. This indicates that ESCO1 controls cohesion through substrate-assisted catalysis. Thus, this study discloses a key mechanism for cohesion establishment.


Asunto(s)
Acetilcoenzima A/metabolismo , Acetiltransferasas/química , Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Proteínas de Saccharomyces cerevisiae/química , Acetiltransferasas/metabolismo , Dominio Catalítico , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cristalografía por Rayos X , Humanos , Simulación del Acoplamiento Molecular , Mutación , Unión Proteica , Multimerización de Proteína , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
FEBS Lett ; 579(27): 6037-43, 2005 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-16226262

RESUMEN

The polyamine synthesis enzyme spermidine synthase (SPDS) has been cloned from the model nematode Caenorhabditis elegans. Biochemical characterisation of the recombinantly expressed protein revealed a high degree of similarity to other eukaryotic SPDS with the exception of a low affinity towards the substrate decarboxylated S-adenosylmethionine (Km = 110 microM) and a less pronounced feedback inhibition by the second reaction product 5'-methylthioadenosine (IC50 = 430 microM). The C. elegans protein that carries a nematode-specific insertion of 27 amino acids close to its N-terminus was crystallized, leading to the first X-ray structure of a dimeric eukaryotic SPDS.


Asunto(s)
Caenorhabditis elegans/enzimología , Espermidina Sintasa/química , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/genética , Clonación Molecular , Cristalografía por Rayos X , Dimerización , Retroalimentación Fisiológica , Datos de Secuencia Molecular , Conformación Proteica , Espermidina Sintasa/genética , Espermidina Sintasa/metabolismo
20.
Eur J Med Chem ; 95: 546-51, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25847771

RESUMEN

Protein ADP-ribosylation is a post-translational modification involved in DNA repair, protein degradation, transcription regulation, and epigenetic events. Intracellular ADP-ribosylation is catalyzed predominantly by ADP-ribosyltransferases with diphtheria toxin homology (ARTDs). The most prominent member of the ARTD family, poly(ADP-ribose) polymerase-1 (ARTD1/PARP1) has been a target for cancer drug development for decades. Current PARP inhibitors are generally non-selective, and inhibit the mono-ADP-ribosyltransferases with low potency. Here we describe the synthesis of acylated amino benzamides and screening against the mono-ADP-ribosyltransferases ARTD7/PARP15, ARTD8/PARP14, ARTD10/PARP10, and the poly-ADP-ribosyltransferase ARTD1/PARP1. The most potent compound inhibits ARTD10 with sub-micromolar IC50.


Asunto(s)
ADP Ribosa Transferasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Evaluación Preclínica de Medicamentos , Humanos , Concentración 50 Inhibidora
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA