Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Cell ; 165(3): 593-605, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27062924

RESUMEN

The estrogen receptor (ER), glucocorticoid receptor (GR), and forkhead box protein 1 (FoxA1) are significant factors in breast cancer progression. FoxA1 has been implicated in establishing ER-binding patterns though its unique ability to serve as a pioneer factor. However, the molecular interplay between ER, GR, and FoxA1 requires further investigation. Here we show that ER and GR both have the ability to alter the genomic distribution of the FoxA1 pioneer factor. Single-molecule tracking experiments in live cells reveal a highly dynamic interaction of FoxA1 with chromatin in vivo. Furthermore, the FoxA1 factor is not associated with detectable footprints at its binding sites throughout the genome. These findings support a model wherein interactions between transcription factors and pioneer factors are highly dynamic. Moreover, at a subset of genomic sites, the role of pioneer can be reversed, with the steroid receptors serving to enhance binding of FoxA1.


Asunto(s)
Factor Nuclear 3-alfa del Hepatocito/metabolismo , Cromatina/metabolismo , Desoxirribonucleasas/metabolismo , Humanos , Células MCF-7 , Receptores de Estrógenos/genética , Receptores de Glucocorticoides/genética , Factores de Transcripción/metabolismo
2.
EMBO J ; 43(11): 2166-2197, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38600242

RESUMEN

The centromeric histone H3 variant CENP-A is overexpressed in many cancers. The mislocalization of CENP-A to noncentromeric regions contributes to chromosomal instability (CIN), a hallmark of cancer. However, pathways that promote or prevent CENP-A mislocalization remain poorly defined. Here, we performed a genome-wide RNAi screen for regulators of CENP-A localization which identified DNAJC9, a J-domain protein implicated in histone H3-H4 protein folding, as a factor restricting CENP-A mislocalization. Cells lacking DNAJC9 exhibit mislocalization of CENP-A throughout the genome, and CIN phenotypes. Global interactome analysis showed that DNAJC9 depletion promotes the interaction of CENP-A with the DNA-replication-associated histone chaperone MCM2. CENP-A mislocalization upon DNAJC9 depletion was dependent on MCM2, defining MCM2 as a driver of CENP-A deposition at ectopic sites when H3-H4 supply chains are disrupted. Cells depleted for histone H3.3, also exhibit CENP-A mislocalization. In summary, we have defined novel factors that prevent mislocalization of CENP-A, and demonstrated that the integrity of H3-H4 supply chains regulated by histone chaperones such as DNAJC9 restrict CENP-A mislocalization and CIN.


Asunto(s)
Proteína A Centromérica , Inestabilidad Cromosómica , Histonas , Humanos , Proteína A Centromérica/metabolismo , Proteína A Centromérica/genética , Histonas/metabolismo , Histonas/genética , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Componente 2 del Complejo de Mantenimiento de Minicromosoma/genética , Células HeLa , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas del Choque Térmico HSP40/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Centrómero/metabolismo
3.
Mol Cell ; 72(5): 875-887.e9, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30318444

RESUMEN

It is unknown how the dynamic binding of transcription factors (TFs) is molecularly linked to chromatin remodeling and transcription. Using single-molecule tracking (SMT), we show that the chromatin remodeler RSC speeds up the search process of the TF Ace1p for its response elements (REs) at the CUP1 promoter. We quantified smFISH mRNA data using a gene bursting model and demonstrated that RSC regulates transcription bursts of CUP1 only by modulating TF occupancy but does not affect initiation and elongation rates. We show by SMT that RSC binds to activated promoters transiently, and based on MNase-seq data, that RSC does not affect the nucleosomal occupancy at CUP1. Therefore, transient binding of Ace1p and rapid bursts of transcription at CUP1 may be dependent on short repetitive cycles of nucleosome mobilization. This type of regulation reduces the transcriptional noise and ensures a homogeneous response of the cell population to heavy metal stress.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Metalotioneína/genética , ARN Mensajero/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/metabolismo , Metalotioneína/metabolismo , Modelos Genéticos , Nucleosomas/química , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Imagen Individual de Molécula/métodos , Factores de Transcripción/metabolismo , Transcripción Genética
4.
J Cell Sci ; 136(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37129573

RESUMEN

Restricting the localization of the evolutionarily conserved centromeric histone H3 variant CENP-A to centromeres prevents chromosomal instability (CIN). The mislocalization of CENP-A to non-centromeric regions contributes to CIN in yeasts, flies and human cells. Even though overexpression and mislocalization of CENP-A have been reported in cancers, the mechanisms responsible for its mislocalization remain poorly understood. Here, we used an imaging-based high-throughput RNAi screen to identify factors that prevent mislocalization of overexpressed YFP-tagged CENP-A (YFP-CENP-A) in HeLa cells. Among the top five candidates in the screen - the depletion of which showed increased nuclear YFP-CENP-A fluorescence - were the histone chaperones CHAF1B (or p60) and CHAF1A (or p150). Follow-up validation and characterization experiments showed that CHAF1B-depleted cells exhibited CENP-A mislocalization, CIN phenotypes and increased enrichment of CENP-A in chromatin fractions. The depletion of DAXX, a histone H3.3 chaperone, suppressed CENP-A mislocalization and CIN in CHAF1B-depleted cells. We propose that in CHAF1B-depleted cells, DAXX promotes mislocalization of the overexpressed CENP-A to non-centromeric regions, resulting in CIN. In summary, we identified regulators of CENP-A localization and defined a role for CHAF1B in preventing DAXX-dependent CENP-A mislocalization and CIN.


Asunto(s)
Proteínas Cromosómicas no Histona , Histonas , Humanos , Histonas/genética , Proteína A Centromérica/genética , Células HeLa , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromatina , Centrómero/metabolismo , Chaperonas Moleculares/metabolismo , Inestabilidad Cromosómica , Autoantígenos/genética , Factor 1 de Ensamblaje de la Cromatina/genética
5.
Histochem Cell Biol ; 162(1-2): 161-183, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38758429

RESUMEN

The nucleolus is the largest membraneless organelle and nuclear body in mammalian cells. It is primarily involved in the biogenesis of ribosomes, essential macromolecular machines responsible for synthesizing all proteins required by the cell. The assembly of ribosomes is evolutionarily conserved and accounts for the most energy-consuming cellular process needed for cell growth, proliferation, and homeostasis. Despite the significance of this process, the substructural mechanistic principles of the nucleolar function in preribosome biogenesis have only recently begun to emerge. Here, we provide a new perspective using advanced super-resolution microscopy and single-molecule MINFLUX nanoscopy on the mechanistic principles governing ribosomal RNA-seeded nucleolar formation and the resulting tripartite suborganization of the nucleolus driven, in part, by liquid-liquid phase separation. With recent advances in the cryogenic electron microscopy (cryoEM) structural analysis of ribosome biogenesis intermediates, we highlight the current understanding of the step-wise assembly of preribosomal subunits in the nucleolus. Finally, we address how novel anticancer drug candidates target early steps in ribosome biogenesis to exploit these essential dependencies for growth arrest and tumor control.


Asunto(s)
Nucléolo Celular , Nucléolo Celular/metabolismo , Nucléolo Celular/química , Humanos , Ribosomas/metabolismo , Ribosomas/química , Microscopía , Animales
6.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36555532

RESUMEN

Cellular functions depend on the dynamic assembly of protein regulator complexes at specific cellular locations. Single Molecule Tracking (SMT) is a method of choice for the biochemical characterization of protein dynamics in vitro and in vivo. SMT follows individual molecules in live cells and provides direct information about their behavior. SMT was successfully applied to mammalian models. However, mammalian cells provide a complex environment where protein mobility depends on numerous factors that are difficult to control experimentally. Therefore, yeast cells, which are unicellular and well-studied with a small and completely sequenced genome, provide an attractive alternative for SMT. The simplicity of organization, ease of genetic manipulation, and tolerance to gene fusions all make yeast a great model for quantifying the kinetics of major enzymes, membrane proteins, and nuclear and cellular bodies. However, very few researchers apply SMT techniques to yeast. Our goal is to promote SMT in yeast to a wider research community. Our review serves a dual purpose. We explain how SMT is conducted in yeast cells, and we discuss the latest insights from yeast SMT while putting them in perspective with SMT of higher eukaryotes.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animales , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Núcleo Celular/metabolismo , Secuencia de Bases , Biofisica , Mamíferos/metabolismo
7.
J Immunol ; 200(8): 2714-2726, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29507105

RESUMEN

Follicular CD8+ T (fCD8) cells reside within B cell follicles and are thought to be immune-privileged sites of HIV/SIV infection. We have observed comparable levels of fCD8 cells between chronically SIV-infected rhesus macaques with low viral loads (LVL) and high viral loads (HVL), raising the question concerning their contribution to viremia control. In this study, we sought to clarify the role of SIV-specific fCD8 cells in lymph nodes during the course of SIV infection in rhesus macaques. We observed that fCD8 cells, T follicular helper (Tfh) cells, and T follicular regulatory cells (Tfreg) were all elevated in chronic SIV infection. fCD8 cells of LVL animals tended to express more Gag-specific granzyme B and exhibited significantly greater killing than did HVL animals, and their cell frequencies were negatively correlated with viremia, suggesting a role in viremia control. Env- and Gag-specific IL-21+ Tfh of LVL but not HVL macaques negatively correlated with viral load, suggesting better provision of T cell help to fCD8 cells. Tfreg positively correlated with fCD8 cells in LVL animals and negatively correlated with viremia, suggesting a potential benefit of Tfreg via suppression of chronic inflammation. In contrast, in HVL macaques, Tfreg and fCD8 cell frequencies tended to be negatively correlated, and a positive correlation was seen between Tfreg number and viremia, suggesting possible dysfunction and suppression of an effective fCD8 cell immune response. Our data suggest that control of virus-infected cells in B cell follicles not only depends on fCD8 cell cytotoxicity but also on complex fCD8 cell associations with Tfh cells and Tfreg.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Reguladores/inmunología , Viremia/inmunología , Animales , Linfocitos B/inmunología , Linfocitos B/virología , Linfocitos T CD8-positivos/virología , Femenino , Inflamación/inmunología , Inflamación/virología , Interleucinas/inmunología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/virología , Macaca mulatta , Masculino , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Linfocitos T Colaboradores-Inductores/virología , Linfocitos T Reguladores/virología , Carga Viral/inmunología , Viremia/virología
8.
Methods ; 157: 56-65, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30145357

RESUMEN

The nuclear envelope (NE) is an essential cellular structure that contributes to nuclear stability, organization, and function. Mutations in NE-associated proteins result in a myriad of pathologies with widely diverse clinical manifestations, ages of onsets, and affected tissues. Notably, several hundred disease-causing mutations have been mapped to the LMNA gene, which encodes the intermediate filament proteins lamin A and C, two of the major architectural components of the nuclear envelope. However, how NE dysfunction leads to the highly variable pathologies observed in patient cells and tissues remains poorly understood. One model suggests alterations in the dynamic properties of the nuclear lamina and its associated proteins contribute to disease phenotype. Here, we describe the application of single molecule tracking (SMT) methodology to characterize the behavior of nuclear envelope transmembrane proteins and nuclear lamins in their native cellular environment at the single molecule level. As proof-of-concept, we demonstrate by SMT that Halo-tagged lamin B1, Samp1, lamin A, and lamin AΔ50 have distinct binding and kinetic properties, and we identify several disease-relevant mutants which exhibit altered binding dynamics. SMT is also able to separately probe the dynamics of the peripheral and the nucleoplasmic populations of lamin A mutants. We suggest that SMT is a robust and sensitive method to investigate the relationship between pathogenic mutations or cellular processes and protein dynamics at the NE.


Asunto(s)
Núcleo Celular/genética , Proteínas de la Membrana/genética , Membrana Nuclear/genética , Proteínas Nucleares/genética , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lamina Tipo B/genética , Mutación/genética , Membrana Nuclear/metabolismo , Lámina Nuclear/genética , Lámina Nuclear/metabolismo
9.
Int J Mol Sci ; 21(14)2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32708832

RESUMEN

Yeast prions and mnemons are respectively transmissible and non-transmissible self-perpetuating protein assemblies, frequently based on cross-ß ordered detergent-resistant aggregates (amyloids). Prions cause devastating diseases in mammals and control heritable traits in yeast. It was shown that the de novo formation of the prion form [PSI+] of yeast release factor Sup35 is facilitated by aggregates of other proteins. Here we explore the mechanism of the promotion of [PSI+] formation by Ste18, an evolutionarily conserved gamma subunit of a G-protein coupled receptor, a key player in responses to extracellular stimuli. Ste18 forms detergent-resistant aggregates, some of which are colocalized with de novo generated Sup35 aggregates. Membrane association of Ste18 is required for both Ste18 aggregation and [PSI+] induction, while functional interactions involved in signal transduction are not essential for these processes. This emphasizes the significance of a specific location for the nucleation of protein aggregation. In contrast to typical prions, Ste18 aggregates do not show a pattern of heritability. Our finding that Ste18 levels are regulated by the ubiquitin-proteasome system, in conjunction with the previously reported increase in Ste18 levels upon the exposure to mating pheromone, suggests that the concentration-dependent Ste18 aggregation may mediate a mnemon-like response to physiological stimuli.


Asunto(s)
Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Factores de Terminación de Péptidos/metabolismo , Agregado de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Membrana Celular/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/análisis , Factores de Terminación de Péptidos/análisis , Proteolisis , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/análisis , Ubiquitinación
10.
Mol Cell ; 43(2): 242-52, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21777813

RESUMEN

Yeast prions are self-perpetuating, QN-rich amyloids that control heritable traits and serve as a model for mammalian amyloidoses. De novo prion formation by overproduced prion protein is facilitated by other aggregated QN-rich protein(s) and is influenced by alterations of protein homeostasis. Here we explore the mechanism by which the Las17-binding protein Lsb2 (Pin3) promotes conversion of the translation termination factor Sup35 into its prion form, [PSI(+)]. We show that Lsb2 localizes with some Sup35 aggregates and that Lsb2 is a short-lived protein whose levels are controlled via the ubiquitin-proteasome system and are dramatically increased by stress. Loss of Lsb2 decreases stability of [PSI(+)] after brief heat shock. Mutations interfering with Lsb2 ubiquitination increase prion induction, while a mutation eliminating association of Lsb2 with the actin cytoskeleton blocks its aggregation and prion-inducing ability. These findings directly implicate the UPS and actin cytoskeleton in regulating prions via a stress-inducible QN-rich protein.


Asunto(s)
Actinas/metabolismo , Proteínas Portadoras/genética , Citoesqueleto/metabolismo , Priones/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinación/fisiología , Proteínas Portadoras/metabolismo , Mutación , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Priones/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico
11.
Proc Natl Acad Sci U S A ; 113(29): 8236-41, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27382178

RESUMEN

Transcription factors dynamically bind to chromatin and are essential for the regulation of genes. Although a large percentage of these proteins appear to self-associate to form dimers or higher order oligomers, the stoichiometry of DNA-bound transcription factors has been poorly characterized in vivo. The glucocorticoid receptor (GR) is a ligand-regulated transcription factor widely believed to act as a dimer or a monomer. Using a unique set of imaging techniques coupled with a cell line containing an array of DNA binding elements, we show that GR is predominantly a tetramer when bound to its target DNA. We find that DNA binding triggers an interdomain allosteric regulation within the GR, leading to tetramerization. We therefore propose that dynamic changes in GR stoichiometry represent a previously unidentified level of regulation in steroid receptor activation. Quaternary structure analysis of other members of the steroid receptor family (estrogen, androgen, and progesterone receptors) reveals variation in oligomerization states among this family of transcription factors. Because GR's oligomerization state has been implicated in therapy outcome, our findings open new doors to the rational design of novel GR ligands and redefine the quaternary structure of steroid receptors.


Asunto(s)
ADN/metabolismo , Receptores de Glucocorticoides/metabolismo , Animales , Línea Celular Tumoral , Células Cultivadas , Fibroblastos/metabolismo , Ratones Noqueados , Multimerización de Proteína , Receptores de Glucocorticoides/genética
12.
Chromosoma ; 126(5): 655-667, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28343235

RESUMEN

Human chromosomes occupy distinct territories in the interphase nucleus. Such chromosome territories (CTs) are positioned according to gene density. Gene-rich CTs are generally located in the center of the nucleus, while gene-poor CTs are positioned more towards the nuclear periphery. However, the association between gene expression levels and the radial positioning of genes within the CT is still under debate. In the present study, we performed three-dimensional fluorescence in situ hybridization experiments in the colorectal cancer cell lines DLD-1 and LoVo using whole chromosome painting probes for chromosomes 8 and 11 and BAC clones targeting four genes with different expression levels assessed by gene expression arrays and RT-PCR. Our results confirmed that the two over-expressed genes, MYC on chromosome 8 and CCND1 on chromosome 11, are located significantly further away from the center of the CT compared to under-expressed genes on the same chromosomes, i.e., DLC1 and SCN3B. When CCND1 expression was reduced after silencing the major transcription factor of the WNT/ß-catenin signaling pathway, TCF7L2, the gene was repositioned and mostly detected in the interior of the CT. Thus, we suggest a non-random distribution in which over-expressed genes are located more towards the periphery of the respective CTs.


Asunto(s)
Núcleo Celular/metabolismo , Cromosomas Humanos/metabolismo , Interfase , Transducción de Señal , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Línea Celular Tumoral , Núcleo Celular/genética , Cromosomas Humanos/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Regulación de la Expresión Génica , Humanos , Hibridación Fluorescente in Situ
13.
J Immunol ; 196(4): 1700-10, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26773147

RESUMEN

Measurement of Ag-specific T follicular helper (TFH) cell activity in rhesus macaques has not previously been reported. Given that rhesus macaques are the animal model of choice for evaluating protective efficacy of HIV/SIV vaccine candidates and that TFH cells play a pivotal role in aiding B cell maturation, quantifying vaccine induction of HIV/SIV-specific TFH cells would greatly benefit vaccine development. In this study, we quantified SIV Env-specific IL-21-producing TFH cells for the first time, to our knowledge, in a nonhuman primate vaccine study. Macaques were primed twice mucosally with adenovirus 5 host range mutant recombinants encoding SIV Env, Rev, Gag, and Nef followed by two i.m. boosts with monomeric SIV gp120 or oligomeric SIV gp140 proteins. At 2 wk after the second protein boost, we obtained lymph node biopsy specimens and quantified the frequency of total and SIV Env-specific IL-21(+) TFH cells and total germinal center B cells, the size and number of germinal centers, and the frequency of SIV-specific Ab-secreting cells in B cell zones. Multiple correlation analyses established the importance of TFH for development of B cell responses in systemic and mucosally localized compartments, including blood, bone marrow, and rectum. Our results suggest that the SIV-specific TFH cells, initially induced by replicating adenovirus-recombinant priming, are long lived. The multiple correlations of SIV Env-specific TFH cells with systemic and mucosal SIV-specific B cell responses indicate that this cell population should be further investigated in HIV vaccine development as a novel correlate of immunity.


Asunto(s)
Productos del Gen env/inmunología , Centro Germinal/inmunología , Ganglios Linfáticos/inmunología , Vacunas contra el SIDAS/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Linfocitos B/inmunología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Macaca mulatta , Microscopía Confocal , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología
14.
Methods ; 123: 76-88, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28315485

RESUMEN

Progressive, technological achievements in the quantitative fluorescence microscopy field are allowing researches from many different areas to start unraveling the dynamic intricacies of biological processes inside living cells. From super-resolution microscopy techniques to tracking of individual proteins, fluorescence microscopy is changing our perspective on how the cell works. Fortunately, a growing number of research groups are exploring single-molecule studies in living cells. However, no clear consensus exists on several key aspects of the technique such as image acquisition conditions, or analysis of the obtained data. Here, we describe a detailed approach to perform single-molecule tracking (SMT) of transcription factors in living cells to obtain key binding characteristics, namely their residence time and bound fractions. We discuss different types of fluorophores, labeling density, microscope, cameras, data acquisition, and data analysis. Using the glucocorticoid receptor as a model transcription factor, we compared alternate tags (GFP, mEOS, HaloTag, SNAP-tag, CLIP-tag) for potential multicolor applications. We also examine different methods to extract the dissociation rates and compare them with simulated data. Finally, we discuss several challenges that this exciting technique still faces.


Asunto(s)
Células Epiteliales/metabolismo , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Receptores de Glucocorticoides/genética , Imagen Individual de Molécula/métodos , Animales , Antígenos de Diferenciación de Linfocitos B/genética , Antígenos de Diferenciación de Linfocitos B/metabolismo , Línea Celular Tumoral , Células Epiteliales/ultraestructura , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células Hep G2 , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/metabolismo , Humanos , Cinética , Células MCF-7 , Ratones , Unión Proteica , Receptores de Glucocorticoides/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
15.
Nucleic Acids Res ; 44(21): e160, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27566148

RESUMEN

In vivo single molecule tracking has recently developed into a powerful technique for measuring and understanding the transient interactions of transcription factors (TF) with their chromatin response elements. However, this method still lacks a solid foundation for distinguishing between specific and non-specific interactions. To address this issue, we took advantage of the power of molecular genetics of yeast. Yeast TF Ace1p has only five specific sites in the genome and thus serves as a benchmark to distinguish specific from non-specific binding. Here, we show that the estimated residence time of the short-residence molecules is essentially the same for Hht1p, Ace1p and Hsf1p, equaling 0.12-0.32 s. These three DNA-binding proteins are very different in their structure, function and intracellular concentration. This suggests that (i) short-residence molecules are bound to DNA non-specifically, and (ii) that non-specific binding shares common characteristics between vastly different DNA-bound proteins and thus may have a common underlying mechanism. We develop new and robust procedure for evaluation of adverse effects of labeling, and new quantitative analysis procedures that significantly improve residence time measurements by accounting for fluorophore blinking. Our results provide a framework for the reliable performance and analysis of single molecule TF experiments in yeast.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/metabolismo , Imagen Molecular/métodos , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/análisis , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Histonas/genética , Histonas/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Tiempo , Factores de Transcripción/genética
16.
Mol Cell ; 35(5): 642-56, 2009 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-19748358

RESUMEN

Structural changes in specific chromatin domains are essential to the orderly progression of numerous nuclear processes, including transcription. We report that the nuclear protein NSBP1 (HMGN5), a recently discovered member of the HMGN nucleosome-binding protein family, is specifically targeted by its C-terminal domain to nucleosomes in euchromatin. We find that the interaction of NSBP1 with nucleosomes alters the compaction of cellular chromatin and that in living cells, NSBP1 interacts with linker histones. We demonstrate that the negatively charged C-terminal domain of NSBP1 interacts with the positively charged C-terminal domain of H5 and that NSBP1 counteracts the linker histone-mediated compaction of a nucleosomal array. Dysregulation of the cellular levels of NSBP1 alters the transcription level of numerous genes. We suggest that mouse NSBP1 is an architectural protein that binds preferentially to euchromatin and modulates the fidelity of the cellular transcription profile by counteracting the chromatin-condensing activity of linker histones.


Asunto(s)
Ensamble y Desensamble de Cromatina , Eucromatina/metabolismo , Proteínas HMGN/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Transactivadores/metabolismo , Transcripción Genética , Animales , Sitios de Unión , Línea Celular Transformada , Eucromatina/química , Perfilación de la Expresión Génica , Proteínas HMGN/química , Proteínas HMGN/genética , Histonas/química , Lisina , Metilación , Ratones , Microscopía Confocal , Modelos Moleculares , Células 3T3 NIH , Conformación de Ácido Nucleico , Conformación Proteica , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Interferencia de ARN , Proteínas Recombinantes de Fusión/metabolismo , Transactivadores/química , Transactivadores/genética , Transfección
17.
J Biol Chem ; 289(40): 27625-39, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25143386

RESUMEN

Yeast prions are self-propagating amyloid-like aggregates of Q/N-rich protein that confer heritable traits and provide a model of mammalian amyloidoses. [PSI(+)] is a prion isoform of the translation termination factor Sup35. Propagation of [PSI(+)] during cell division under normal conditions and during the recovery from damaging environmental stress depends on cellular chaperones and is influenced by ubiquitin proteolysis and the actin cytoskeleton. The paralogous yeast proteins Lsb1 and Lsb2 bind the actin assembly protein Las17 (a yeast homolog of human Wiskott-Aldrich syndrome protein) and participate in the endocytic pathway. Lsb2 was shown to modulate maintenance of [PSI(+)] during and after heat shock. Here, we demonstrate that Lsb1 also regulates maintenance of the Sup35 prion during and after heat shock. These data point to the involvement of Lsb proteins in the partitioning of protein aggregates in stressed cells. Lsb1 abundance and cycling between actin patches, endoplasmic reticulum, and cytosol is regulated by the Guided Entry of Tail-anchored proteins pathway and Rsp5-dependent ubiquitination. Heat shock-induced proteolytic processing of Lsb1 is crucial for prion maintenance during stress. Our findings identify Lsb1 as another component of a tightly regulated pathway controlling protein aggregation in changing environments.


Asunto(s)
Actinas/metabolismo , Proteínas Portadoras/metabolismo , Respuesta al Choque Térmico , Factores de Terminación de Péptidos/metabolismo , Priones/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas Portadoras/genética , Citoesqueleto/genética , Citoesqueleto/metabolismo , Factores de Terminación de Péptidos/genética , Priones/genética , Proteolisis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
18.
bioRxiv ; 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37503023

RESUMEN

Labelling of nascent stem loops with fluorescent proteins has fostered the visualization of transcription in living cells. Quantitative analysis of recorded fluorescence traces can shed light on kinetic transcription parameters and regulatory mechanisms. However, existing methods typically focus on steady state dynamics. Here, we combine a stochastic process transcription model with a hierarchical Bayesian method to infer global as well locally shared parameters for groups of cells and recover unobserved quantities such as initiation times and polymerase loading of the gene. We apply our approach to the cyclic response of the yeast CUP1 locus to heavy metal stress. Within the previously described slow cycle of transcriptional activity on the scale of minutes, we discover fast time-modulated bursting on the scale of seconds. Model comparison suggests that slow oscillations of transcriptional output are regulated by the amplitude of the bursts. Several polymerases may initiate during a burst.

19.
J Cell Biol ; 177(6): 957-67, 2007 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-17576795

RESUMEN

According to the transcription factory model, localized transcription sites composed of immobilized polymerase molecules transcribe chromatin by reeling it through the transcription site and extruding it to form a surrounding domain of recently transcribed decondensed chromatin. Although transcription sites have been identified in various cells, surrounding domains of recently transcribed decondensed chromatin have not. We report evidence that transcription sites associated with a tandem gene array in mouse cells are indeed surrounded by or adjacent to a domain of decondensed chromatin composed of sequences from the gene array. Formation of this decondensed domain requires transcription and topoisomerase IIalpha activity. The decondensed domain is enriched for the trimethyl H3K36 mark that is associated with recently transcribed chromatin in yeast and several mammalian systems. Consistent with this, chromatin immunoprecipitation demonstrates a comparable enrichment of this mark in transcribed sequences at the tandem gene array. These results provide new support for the pol II factory model, in which an immobilized polymerase molecule extrudes decondensed, transcribed sequences into its surroundings.


Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Sitio de Iniciación de la Transcripción , ADN-Topoisomerasas de Tipo II/metabolismo , Modelos Genéticos , Transcripción Genética
20.
Cell Rep ; 38(4): 110292, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35081348

RESUMEN

The MYC oncogene has been studied for decades, yet there is still intense debate over how this transcription factor controls gene expression. Here, we seek to answer these questions with an in vivo readout of discrete events of gene expression in single cells. We engineered an optogenetic variant of MYC (Pi-MYC) and combined this tool with single-molecule RNA and protein imaging techniques to investigate the role of MYC in modulating transcriptional bursting and transcription factor binding dynamics in human cells. We find that the immediate consequence of MYC overexpression is an increase in the duration rather than in the frequency of bursts, a functional role that is different from the majority of human transcription factors. We further propose that the mechanism by which MYC exerts global effects on the active period of genes is by altering the binding dynamics of transcription factors involved in RNA polymerase II complex assembly and productive elongation.


Asunto(s)
Regulación de la Expresión Génica/genética , Genes myc/fisiología , Transcripción Genética/fisiología , Animales , Línea Celular , Humanos , Ratones , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA