Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Immunol ; 30: 203-20, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22224775

RESUMEN

Lampreys and hagfish are primitive jawless vertebrates capable of mounting specific immune responses. Lampreys possess different types of lymphocytes, akin to T and B cells of jawed vertebrates, that clonally express somatically diversified antigen receptors termed variable lymphocyte receptors (VLRs), which are composed of tandem arrays of leucine-rich repeats. The VLRs appear to be diversified by a gene conversion mechanism involving lineage-specific cytosine deaminases. VLRA is expressed on the surface of T-like lymphocytes; B-like lymphocytes express and secrete VLRB as a multivalent protein. VLRC is expressed by a distinct lymphocyte lineage. VLRA-expressing cells appear to develop in a thymus-like tissue at the tip of gill filaments, and VLRB-expressing cells develop in hematopoietic tissues. Reciprocal expression patterns of evolutionarily conserved interleukins and chemokines possibly underlie cell-cell interactions during an immune response. The discovery of VLRs in agnathans illuminates the origins of adaptive immunity in early vertebrates.


Asunto(s)
Inmunidad Adaptativa , Receptores de Antígenos/inmunología , Animales , Antígenos/inmunología , Antígenos/metabolismo , Evolución Biológica , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Linaje de la Célula/genética , Linaje de la Célula/inmunología , Citosina Desaminasa/genética , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Linfocitos/citología , Linfocitos/inmunología , Linfocitos/metabolismo , Unión Proteica/inmunología , Conformación Proteica , Receptores de Antígenos/química , Receptores de Antígenos/genética
2.
Nat Immunol ; 19(9): 923-931, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30104634

RESUMEN

The basic principle of adaptive immunity is to strictly discriminate between self and non-self, and a central challenge to overcome is the enormous variety of pathogens that might be encountered. In cell-mediated immunity, immunological discernment takes place at a molecular or cellular level. Central to both mechanisms of discernment is the generation of antigenic peptides associated with MHC class I molecules, which is achieved by a proteolytic complex called the proteasome. To adequately accomplish the discrimination between self and non-self that is essential for adaptive immunity and self-tolerance, two proteasome subtypes have evolved via gene duplication: the immunoproteasome and the thymoproteasome. In this Review, we describe various aspects of these immunity-dedicated proteasomes, from their discovery to recent findings.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Evolución Molecular , Complejo de la Endopetidasa Proteasomal/inmunología , Timo/inmunología , Inmunidad Adaptativa , Animales , Autoantígenos/inmunología , Duplicación de Gen , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Péptidos/inmunología , Complejo de la Endopetidasa Proteasomal/genética , Proteolisis , Autotolerancia
4.
Am J Pathol ; 194(6): 1033-1046, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38423355

RESUMEN

Low-grade chronic inflammation contributes to both aging and the pathogenesis of age-related diseases. White adipose tissue (WAT) in obese individuals exhibits chronic inflammation, which is associated with obesity-related disorders. Aging exacerbates obesity-related inflammation in WAT; however, the molecular mechanisms underlying chronic inflammation and its exacerbation by aging remain unclear. Age-related decline in activity of the proteasome, a multisubunit proteolytic complex, has been implicated in age-related diseases. This study employed a mouse model with decreased proteasomal function that exhibits age-related phenotypes to investigate the impact of adipocyte senescence on WAT inflammation. Transgenic mice expressing proteasomal subunit ß5t with weak chymotrypsin-like activity experience reduced lifespan and develop age-related phenotypes. Mice fed with a high-fat diet and experiencing proteasomal dysfunction exhibited increased WAT inflammation, increased infiltration of proinflammatory M1-like macrophages, and increased proinflammatory adipocytokine-like monocyte chemoattractant protein-1, plasminogen activator inhibitor-1, and tumor necrosis factor-α, which are all associated with activation of endoplasmic reticulum (ER) stress-related pathways. Impaired proteasomal activity also activated ER stress-related molecules and induced expression of proinflammatory adipocytokines in adipocyte-like cells differentiated from 3T3-L1 cells. Collectively, the results suggesed that impaired proteasomal activity increases ER stress and that subsequent inflammatory pathways play pivotal roles in WAT inflammation. Because proteasomal function declines with age, age-related proteasome impairment may be involved in obesity-related inflammation among elderly individuals.


Asunto(s)
Estrés del Retículo Endoplásmico , Inflamación , Ratones Transgénicos , Obesidad , Complejo de la Endopetidasa Proteasomal , Animales , Complejo de la Endopetidasa Proteasomal/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Inflamación/patología , Inflamación/metabolismo , Obesidad/metabolismo , Obesidad/patología , Ratones , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Ratones Endogámicos C57BL , Dieta Alta en Grasa/efectos adversos , Adipocitos/metabolismo , Adipocitos/patología , Masculino , Macrófagos/metabolismo , Macrófagos/patología , Envejecimiento/patología , Envejecimiento/metabolismo , Tejido Adiposo/patología , Tejido Adiposo/metabolismo , Células 3T3-L1 , Enfermedad Crónica
5.
Exp Mol Pathol ; 137: 104891, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38462206

RESUMEN

The aging process in the elderly results in heightened skin fragility associated with various disorders, including pressure ulcers (PUs). Despite the high incidence of PUs in the elderly population, there is a limited body of research specifically examining the impact of aging on the development of pressure ulcers. Therefore, investigating age-related physiological abnormalities is essential to elucidate the pathogenesis of PUs. Ischemia-reperfusion (I/R) injury and the subsequent oxidative stress caused by reactive oxygen species (ROS) play essential roles in the early stage of PUs. In this study, we used a mouse model of proteasomal dysfunction with an age-related phenotype to examine the role of proteasome activity in cutaneous I/R injury in vivo. Decreased proteasome function did not affect the expression of inflammatory cytokines and adhesion molecules in the I/R area in transgenic mice; however, proteasome inhibition increased oxidative stress that was not attenuated by activation of the oxidative stress response mediated by NF-E2-related factor 2 (Nrf2). In dermal fibroblasts (FCs) subjected to hypoxia-reoxygenation (H/R), proteasome inhibition induced oxidative stress and ROS production, and Nrf2 activation did not adequately upregulate antioxidant enzyme expression, possibly leading to antioxidant/oxidant imbalance. The free radical scavenger edaravone had protective effects against I/R injury in vivo and decreased oxidative stress in FCs treated with a proteasome inhibitor and subjected to H/R in vitro. The results suggest that the age-related decline in proteasome activity promotes cutaneous I/R injury-induced oxidative stress, and free radical scavengers may exert protective effects by preventing oxidative stress in the early stage of PUs.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Úlcera por Presión , Complejo de la Endopetidasa Proteasomal , Especies Reactivas de Oxígeno , Daño por Reperfusión , Úlcera por Presión/metabolismo , Úlcera por Presión/patología , Animales , Complejo de la Endopetidasa Proteasomal/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratones , Daño por Reperfusión/patología , Daño por Reperfusión/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Ratones Transgénicos , Fibroblastos/metabolismo , Fibroblastos/patología , Fibroblastos/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Masculino , Piel/patología , Piel/metabolismo , Piel/efectos de los fármacos , Ratones Endogámicos C57BL
6.
Exp Mol Pathol ; 140: 104939, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39426027

RESUMEN

Oxidative stress caused by reactive oxygen species (ROS) is involved in the pathogenesis of renal ischemia-reperfusion injury (I/R injury), a major cause of acute kidney injury and delayed graft function (DGF). DGF is an early transplant complication that worsens graft prognosis and patient survival, but the underlying molecular changes are unclear. The proteasome is a multicatalytic enzyme complex that degrades both normal and damaged proteins, and recent studies have revealed that the immunoproteasome, a specific proteasome isoform whose proteolytic activity enhances the generation of antigenic peptides, plays critical roles in the cellular response against oxidative stress. In this study, we demonstrate the impact of the immunoproteasome in human DGF and in a mouse model of I/R injury. In patients with DGF, the expression of ß5i, a specific immunoproteasome subunit, was decreased in vascular endothelial cells. In a mouse model, ß5i knockout (KO) exacerbated renal I/R injury. KO mice showed greater inflammation, oxidative stress, and endothelial damage compared with wild-type mice. Impaired immunoproteasomal activity also caused increased cell death, ROS production, and expression of inflammatory factors in mouse renal vascular endothelial cells under conditions of hypoxia and reoxygenation. In conclusion, reduced expression of the immunoproteasomal catalytic subunit ß5i exacerbates renal I/R injury in vivo, potentially increasing the risk of DGF. Further research targeting ß5i expression in DGF could lead to the development of novel therapeutic strategies and biomarkers.

7.
Am J Pathol ; 191(1): 144-156, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33339546

RESUMEN

Alzheimer disease (AD) is a progressive neurodegenerative disorder and the most common type of dementia worldwide. There is considerable evidence of age-related disruption of proteostasis being responsible for the development of AD. The proteasome is a multicatalytic enzyme complex that degrades both normal and damaged proteins, and an age-related decline in its activity has been implicated in age-related pathologies. Although proteasomal dysfunction is assumed to be a key AD hallmark, it remains unclear whether its role in disease onset is causative or secondary. In this study, we demonstrate that mice with proteasomal dysfunction exhibited memory impairment with associated neuronal loss, accumulation of phosphorylated tau, and activation of endoplasmic reticulum (ER) stress-related apoptosis pathways. Impaired proteasomal activity also activated ER stress-related apoptosis pathways in HT-22, a murine hippocampal neuronal cell line. HT-22 cell death, caused by proteasomal inhibition, was prevented by an inhibitor of c-Jun N-terminal kinase, an ER stress-related molecule. Collective evidence suggests that impaired proteasomal activity alters proteostasis, and subsequent ER stress-mediated pathways play pivotal roles in neuronal loss. Because aging decreases proteasomal function, age-related impairment of proteasomes may be involved in the development and progression of AD in elderly patients.


Asunto(s)
Encéfalo/patología , Estrés del Retículo Endoplásmico/fisiología , Trastornos de la Memoria/patología , Neuronas/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Apoptosis/fisiología , Encéfalo/metabolismo , Trastornos de la Memoria/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Proteínas tau/metabolismo
8.
Immunogenetics ; 73(1): 5-16, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33159554

RESUMEN

Jawless vertebrates diverged from an ancestor of jawed vertebrates approximately 550 million years ago. They mount adaptive immune responses to repetitive antigenic challenges, despite lacking major histocompatibility complex molecules, immunoglobulins, T cell receptors, and recombination-activating genes. Instead of B cell and T cell receptors, agnathan lymphocytes express unique antigen receptors named variable lymphocyte receptors (VLRs), which generate diversity through a gene conversion-like mechanism. Although gnathostome antigen receptors and VLRs are structurally unrelated, jawed and jawless vertebrates share essential features of lymphocyte-based adaptive immunity, including the expression of a single type of receptor on each lymphocyte, clonal expansion of antigen-stimulated lymphocytes, and the dichotomy of cellular and humoral immunity, indicating that the backbone of the adaptive immune system was established in a common ancestor of all vertebrates. Furthermore, recent evidence indicates that, unlike previously thought, agnathans have a unique classical pathway of complement activation where VLRB molecules act as antibodies instead of immunoglobulins. It seems likely that the last common ancestor of all vertebrates had an adaptive immune system resembling that of jawless vertebrates, suggesting that, as opposed to jawed vertebrates, agnathans have retained the prototype of vertebrate adaptive immunity.


Asunto(s)
Inmunidad Adaptativa/genética , Inmunidad Adaptativa/inmunología , Vertebrados/inmunología , Animales , Anticuerpos/genética , Anticuerpos/inmunología , Evolución Biológica , Vía Clásica del Complemento , Citidina Desaminasa/genética , Citidina Desaminasa/inmunología , Citocinas/genética , Citocinas/inmunología , Inmunidad Innata , Linfocitos/citología , Linfocitos/inmunología , Receptores de Antígenos/genética , Receptores de Antígenos/inmunología , Receptores Toll-Like/genética , Receptores Toll-Like/inmunología , Vertebrados/genética
9.
J Immunol ; 203(7): 1882-1896, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31492741

RESUMEN

Comparative analyses suggest that the MHC was derived from a prevertebrate "primordial immune complex" (PIC). PIC duplicated twice in the well-studied two rounds of genome-wide duplications (2R) early in vertebrate evolution, generating four MHC paralogous regions (predominantly on human chromosomes [chr] 1, 6, 9, 19). Examining chiefly the amphibian Xenopus laevis, but also other vertebrates, we identified their MHC paralogues and mapped MHC class I, AgR, and "framework" genes. Most class I genes mapped to MHC paralogues, but a cluster of Xenopus MHC class Ib genes (xnc), which previously was mapped outside of the MHC paralogues, was surrounded by genes syntenic to mammalian CD1 genes, a region previously proposed as an MHC paralogue on human chr 1. Thus, this gene block is instead the result of a translocation that we call the translocated part of the MHC paralogous region (MHCtrans) Analyses of Xenopus class I genes, as well as MHCtrans, suggest that class I arose at 1R on the chr 6/19 ancestor. Of great interest are nonrearranging AgR-like genes mapping to three MHC paralogues; thus, PIC clearly contained several AgR precursor loci, predating MHC class I/II. However, all rearranging AgR genes were found on paralogues derived from the chr 19 precursor, suggesting that invasion of a variable (V) exon by the RAG transposon occurred after 2R. We propose models for the evolutionary history of MHC/TCR/Ig and speculate on the dichotomy between the jawless (lamprey and hagfish) and jawed vertebrate adaptive immune systems, as we found genes related to variable lymphocyte receptors also map to MHC paralogues.


Asunto(s)
Antígenos CD1/genética , Bases de Datos Genéticas , Antígenos de Histocompatibilidad Clase I/genética , Proteínas de Xenopus/genética , Animales , Antígenos CD1/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Proteínas de Xenopus/inmunología , Xenopus laevis
10.
Pathol Int ; 71(6): 371-382, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33657242

RESUMEN

The proteasome is a multisubunit protease that degrades intracellular proteins into small peptides. Besides playing a pivotal role in many cellular processes indispensable for survival, it is involved in the production of peptides presented by major histocompatibility complex class I molecules. In addition to the standard proteasome shared in all eukaryotes, jawed vertebrates have two specialized forms of proteasome known as immunoproteasomes and thymoproteasomes. The immunoproteasome, which contains cytokine-inducible catalytic subunits with distinct cleavage specificities, produces peptides presented by class I molecules more efficiently than the standard proteasome. The thymoproteasome, which contains a unique catalytic subunit ß5t, is a tissue-specific proteasome expressed exclusively in cortical thymic epithelial cells. It plays a critical role in CD8+ cytotoxic T cell development via positive selection. This review provides a brief overview on the structure and function of these specialized forms of proteasome and their involvement in human disease.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Animales , Presentación de Antígeno , Enfermedades Autoinmunes/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Neoplasias/inmunología , Complejo de la Endopetidasa Proteasomal/inmunología , Complejo de la Endopetidasa Proteasomal/metabolismo , Timoma/inmunología , Virosis/inmunología
11.
Nature ; 505(7482): 174-9, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24402279

RESUMEN

The emergence of jawed vertebrates (gnathostomes) from jawless vertebrates was accompanied by major morphological and physiological innovations, such as hinged jaws, paired fins and immunoglobulin-based adaptive immunity. Gnathostomes subsequently diverged into two groups, the cartilaginous fishes and the bony vertebrates. Here we report the whole-genome analysis of a cartilaginous fish, the elephant shark (Callorhinchus milii). We find that the C. milii genome is the slowest evolving of all known vertebrates, including the 'living fossil' coelacanth, and features extensive synteny conservation with tetrapod genomes, making it a good model for comparative analyses of gnathostome genomes. Our functional studies suggest that the lack of genes encoding secreted calcium-binding phosphoproteins in cartilaginous fishes explains the absence of bone in their endoskeleton. Furthermore, the adaptive immune system of cartilaginous fishes is unusual: it lacks the canonical CD4 co-receptor and most transcription factors, cytokines and cytokine receptors related to the CD4 lineage, despite the presence of polymorphic major histocompatibility complex class II molecules. It thus presents a new model for understanding the origin of adaptive immunity.


Asunto(s)
Evolución Molecular , Genoma/genética , Tiburones/genética , Animales , Calcio/metabolismo , Linaje de la Célula/inmunología , Proteínas de Peces/clasificación , Proteínas de Peces/genética , Eliminación de Gen , Genómica , Inmunidad Celular/genética , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Osteogénesis/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Filogenia , Estructura Terciaria de Proteína/genética , Tiburones/inmunología , Linfocitos T/citología , Linfocitos T/inmunología , Factores de Tiempo , Vertebrados/clasificación , Vertebrados/genética , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
12.
Immunogenetics ; 71(3): 251-261, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30675634

RESUMEN

Proteasomes are a multi-subunit protease complex that produces peptides bound by major histocompatibility complex (MHC) class I molecules. Phylogenetic studies indicate that two specialized forms of proteasomes, immunoproteasomes and thymoproteasomes, and the proteasome activator PA28αß emerged in a common ancestor of jawed vertebrates which acquired adaptive immunity based on the MHC, T cell receptors, and B cell receptors ~ 500 million years ago. Comparative genomics studies now provide strong evidence that the genes coding for the immunoproteasome subunits emerged by genome-wide duplication. On the other hand, the gene encoding the thymoproteasome subunit ß5t emerged by tandem duplication from the gene coding for the ß5 subunit. Strikingly, birds lack immunoproteasomes, thymoproteasomes, and the proteasome activator PA28αß, raising an interesting question of whether they have evolved any compensatory mechanisms.


Asunto(s)
Inmunidad Adaptativa/inmunología , Presentación de Antígeno/inmunología , Evolución Molecular , Antígenos de Histocompatibilidad Clase I/inmunología , Complejo de la Endopetidasa Proteasomal/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Animales , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo
13.
Immunol Rev ; 267(1): 72-87, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26284472

RESUMEN

NKG2D ligands (NKG2DLs) are a group of stress-inducible major histocompatibility complex (MHC) class I-like molecules that act as a danger signal alerting the immune system to the presence of abnormal cells. In mammals, two families of NKG2DL genes have been identified: the MIC gene family encoded in the MHC region and the ULBP gene family encoded outside the MHC region in most species. Some mammals have a third family of NKG2DL-like class I genes which we named MILL (MHC class I-like located near the leukocyte receptor complex). Despite the fact that MILL genes are more closely related to MIC genes than ULBP genes are to MIC genes, MILL molecules do not function as NKG2DLs, and their function remains unknown. With the progress of mammalian genome projects, information on the MIC, ULBP, and MILL gene families became available in many mammalian species. Here, we summarize such information and discuss the origin and evolution of the NKG2DL gene family from the viewpoint of host-pathogen coevolution.


Asunto(s)
Genómica , Antígenos de Histocompatibilidad Clase I/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología , Filogenia , Animales , Evolución Molecular , Antígenos de Histocompatibilidad Clase I/clasificación , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Ligandos , Modelos Genéticos , Modelos Inmunológicos , Subfamilia K de Receptores Similares a Lectina de Células NK/genética
14.
Cancer Sci ; 109(4): 956-965, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29465830

RESUMEN

Radiotherapy induces anti-tumor immunity by induction of tumor antigens and damage-associated molecular patterns (DAMP). DNA, a representative DAMP in radiotherapy, activates the stimulator of interferon genes (STING) pathway which enhances the immune response. However, the immune response does not always parallel the inflammation associated with radiotherapy. This lack of correspondence may, in part, explain the radiation-resistance of tumors. Additive immunotherapy is expected to revive tumor-specific CTL facilitating radiation-resistant tumor shrinkage. Herein pre-administration of the double-stranded RNA, polyinosinic-polycytidylic acid (polyI:C), in conjunction with radiotherapy, was shown to foster tumor suppression in mice bearing radioresistant, ovalbumin-expressing Lewis lung carcinoma (LLC). Extrinsic injection of tumor antigen was not required for tumor suppression. No STING- and CTL-response was induced by radiation in the implant tumor. PolyI:C was more effective for induction of tumor growth retardation at 1 day before radiation than at post-treatment. PolyI:C targeted Toll-like receptor 3 with minimal effect on the mitochondrial antiviral-signaling protein pathway. Likewise, the STING pathway barely contributed to LLC tumor suppression. PolyI:C primed antigen-presenting dendritic cells in draining lymph nodes to induce proliferation of antigen-specific CTL. By combination therapy, CTL efficiently infiltrated into tumors with upregulation of relevant chemokine transcripts. Batf3-positive DC and CD8+ T cells were essential for therapeutic efficacy. Furthermore, polyI:C was shown to stimulate tumor-associated macrophages and release tumor necrosis factor alpha, which acted on tumor cells and increased sensitivity to radiation. Hence, polyI:C treatment prior to radiotherapy potentially induces tumor suppression by boosting CTL-dependent and macrophage-mediated anti-tumor responses. Eventually, polyI:C and radiotherapy in combination would be a promising therapeutic strategy for radiation-resistant tumors.


Asunto(s)
Carcinoma Pulmonar de Lewis/radioterapia , Proliferación Celular/efectos de la radiación , Receptor Toll-Like 3/metabolismo , Animales , Antígenos de Neoplasias/metabolismo , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/efectos de la radiación , Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Carcinoma Pulmonar de Lewis/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Terapia Combinada/métodos , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Células Dendríticas/efectos de la radiación , Modelos Animales de Enfermedad , Inmunoterapia Adoptiva/métodos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Poli I-C/farmacología , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/metabolismo , Linfocitos T Citotóxicos/efectos de la radiación
15.
Immunogenetics ; 75(5): 413-415, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37526703
16.
J Biomed Sci ; 24(1): 79, 2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-29041928

RESUMEN

BACKGROUND: Intestinal tumorigenesis is promoted by myeloid differentiation primary response gene 88 (MyD88) activation in response to the components of microbiota in Apc Min/+ mice. Microbiota also contains double-stranded RNA (dsRNA), a ligand for TLR3, which activates the toll-like receptor adaptor molecule 1 (TICAM-1, also known as TRIF) pathway. METHODS: We established Apc Min/+ Ticam1 -/- mice and their survival was compared to survival of Apc Min/+ Myd88 -/- and wild-type (WT) mice. The properties of polyps were investigated using immunofluorescence staining and RT-PCR analysis. RESULTS: We demonstrate that TICAM-1 is essential for suppression of polyp formation in Apc Min/+ mice. TICAM-1 knockout resulted in shorter survival of mice compared to WT mice or mice with knockout of MyD88 in the Apc Min/+ background. Polyps were more frequently formed in the distal intestine of Apc Min/+ Ticam1 -/- mice than in Apc Min/+ mice. Infiltration of immune cells such as CD11b+ and CD8α+ cells into the polyps was detected histologically. CD11b and CD8α mRNAs were increased in polyps of Apc Min/+ Ticam1 -/- mice compared to Apc Min/+ mice. Gene expression of inducible nitric oxide synthase (iNOS), interferon (IFN)-γ, CXCL9 and IL-12p40 was increased in polyps of Apc Min/+ Ticam1 -/- mice. mRNA and protein expression of c-Myc, a critical transcription factor for inflammation-associated polyposis, were increased in polyps of Apc Min/+ Ticam1 -/- mice. A Lactobacillus strain producing dsRNA was detected in feces of Apc Min/+ mice. CONCLUSION: These results imply that the TLR3/TICAM-1 pathway inhibits polyposis through suppression of c-Myc expression and supports long survival in Apc Min/+ mice.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/genética , Pólipos del Colon/genética , Neoplasias Colorrectales/genética , Pólipos Intestinales/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal , Receptor Toll-Like 3/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor Toll-Like 3/metabolismo
17.
BMC Immunol ; 17(1): 9, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27141827

RESUMEN

BACKGROUND: Triggering receptors expressed on myeloid cells (Trem) proteins are a family of cell surface receptors used to control innate immune responses such as proinflammatory cytokine production in mice. Trem genes belong to a rapidly expanding family of receptors that include activating and inhibitory paired-isoforms. RESULTS: By comparative genomic analysis, we found that Trem4, Trem5 and Trem-like transcript-6 (Treml6) genes typically paired receptors. These paired Trem genes were murine-specific and originated from an immunoreceptor tyrosine-based inhibition motif (ITIM)-containing gene. Treml6 encoded ITIM, whereas Trem4 and Trem5 lacked the ITIM but possessed positively-charged residues to associate with DNAX activating protein of 12 kDa (DAP12). DAP12 was directly associated with Trem4 and Trem5, and DAP12 coupling was mandatory for their expression on the cell surface. In bone marrow-derived dendritic cells (BMDCs) and macrophages (BMDMs), and splenic DC subsets, polyinosinic-polycytidylic acid (polyI:C) followed by type I interferon (IFN) production induced Trem4 and Treml6 whereas polyI:C or other TLR agonists failed to induce the expression of Trem5. PolyI:C induced Treml6 and Trem4 more efficiently in BMDMs than BMDCs. Treml6 was more potentially up-regulated in conventional DC (cDCs) and plasmacytoid DC (pDCs) than Trem4 in mice upon in vivo stimulation with polyI:C. DISCUSSION: Treml6-dependent inhibitory signal would be dominant in viral infection compared to resting state. Though no direct ligands of these Trem receptors have been determined, the results infer that a set of Trem receptors are up-regulated in response to viral RNA to regulate myeloid cell activation through modulation of DAP12-associated Trem4 and ITIM-containing Treml6.


Asunto(s)
Células Dendríticas/inmunología , Macrófagos/inmunología , Receptores Inmunológicos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Inmunidad Innata , Interferón Tipo I/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Dominios Proteicos/genética , ARN Bicatenario/inmunología , Receptor de Interferón alfa y beta/genética , Receptores Inmunológicos/genética
18.
Int Immunol ; 27(2): 105-14, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25239132

RESUMEN

We previously generated a rat model that spontaneously developed small vessel vasculitis (SVV). In this study, a T cell clone reactive with rat vascular endothelial cells (REC) was established and named VASC-1. Intravenous injection of VASC-1 induced SVV in normal recipients. VASC-1 was a TCRαß/CD3-positive CD4/CD8 double-negative T cell clone with expression of NKG2D. The cytokine mRNA profile under unstimulated condition was positive for IL-4 and IFN-γ but negative for IL-2 and IL-10. After interaction with REC, the mRNA expression of IL-2, IL-5 and IL-6 was induced in VASC-1, which was inhibited by blocking of CD1d on the REC surface. Although the protein levels of these cytokines seemed to be lower than the detection limit in the culture medium, IFN-γ was detectable. The production of IFN-γ from the VASC-1 stimulated with LPS-pre-treated REC was inhibited by the CD1d blockade on the REC. These findings indicated VASC-1 as an NKT cell clone. The NKT cell pool includes two major subsets, namely types I and II. Type I NKT cells are characterized by expression of semi-invariant TCRs and the potential to bind to marine sponge-derived α-galactosylceramide (α-GalCer) loaded on CD1d; whereas, type II NKT cells do not manifest these characteristics. VASC-1 exhibited a usage of TCR other than the type I invariant TCR α chain and did not bind to α-GalCer-loaded CD1d; therefore, it was determined as a type II NKT cell clone. The collective evidence suggested that REC-reactive type II NKT cells could be involved in the pathogenesis of SVV in rats.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Células Endoteliales/inmunología , Células T Asesinas Naturales/inmunología , Vasculitis/inmunología , Animales , Antígenos CD1d/inmunología , Enfermedades Autoinmunes/patología , Citocinas/inmunología , Modelos Animales de Enfermedad , Células Endoteliales/patología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología , Lectinas Tipo C/inmunología , Lipopolisacáridos/farmacología , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología , Células T Asesinas Naturales/patología , Ratas , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Vasculitis/patología
19.
Nat Rev Genet ; 11(1): 47-59, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19997068

RESUMEN

The adaptive immune system (AIS) in mammals, which is centred on lymphocytes bearing antigen receptors that are generated by somatic recombination, arose approximately 500 million years ago in jawed fish. This intricate defence system consists of many molecules, mechanisms and tissues that are not present in jawless vertebrates. Two macroevolutionary events are believed to have contributed to the genesis of the AIS: the emergence of the recombination-activating gene (RAG) transposon, and two rounds of whole-genome duplication. It has recently been discovered that a non-RAG-based AIS with similarities to the jawed vertebrate AIS - including two lymphoid cell lineages - arose in jawless fish by convergent evolution. We offer insights into the latest advances in this field and speculate on the selective pressures that led to the emergence and maintenance of the AIS.


Asunto(s)
Sistema Inmunológico/fisiología , Inmunidad/genética , Animales , Linaje de la Célula , Peces , Humanos , Inmunoglobulinas/genética , Linfocitos/inmunología , Complejo Mayor de Histocompatibilidad/genética , Modelos Genéticos , Receptores de Antígenos de Linfocitos B/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Recombinación Genética , Selección Genética , Vertebrados/genética
20.
Lab Invest ; 95(6): 625-34, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25915723

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a disease common in elderly people, characterized by progressive destruction of lung parenchyma and chronic inflammation of the airways. The pathogenesis of COPD remains unclear, but recent studies suggest that oxidative stress-induced apoptosis in alveolar cells contributes to emphysematous lung destruction. The proteasome is a multicatalytic enzyme complex that plays a critical role in proteostasis by rapidly destroying misfolded and modified proteins generated by oxidative and other stresses. Proteasome activity decreases with aging in many organs including lungs, and an age-related decline in proteasomal function has been implicated in various age-related pathologies. However, the role of the proteasome system in the pathogenesis of COPD has not been investigated. Recently, we have established a transgenic (Tg) mouse model with decreased proteasomal chymotrypsin-like activity, showing age-related phenotypes. Using this model, we demonstrate here that decreased proteasomal function accelerates cigarette smoke (CS)-induced pulmonary emphysema. CS-exposed Tg mice showed remarkable airspace enlargement and increased foci of inflammation compared with wild-type controls. Importantly, apoptotic cells were found in the alveolar walls of the affected lungs. Impaired proteasomal activity also enhanced apoptosis in cigarette smoke extract (CSE)-exposed fibroblastic cells derived from mice and humans in vitro. Notably, aggresome formation and prominent nuclear translocation of apoptosis-inducing factor were observed in CSE-exposed fibroblastic cells isolated from Tg mice. Collective evidence suggests that CS exposure and impaired proteasomal activity coordinately enhance apoptotic cell death in the alveolar walls that may be involved in the development and progression of emphysema in susceptible individuals such as the elderly.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Enfisema Pulmonar/inducido químicamente , Enfisema Pulmonar/metabolismo , Humo/efectos adversos , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Estrés del Retículo Endoplásmico/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Enfisema Pulmonar/patología , Nicotiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA