Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther ; 31(9): 2767-2782, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37481701

RESUMEN

The AAV9 gene therapy vector presented in this study is safe in mice and non-human primates and highly efficacious without causing overexpression toxicity, a major challenge for clinical translation of Rett syndrome gene therapy vectors to date. Our team designed a new truncated methyl-CpG-binding protein 2 (MECP2) promoter allowing widespread expression of MECP2 in mice and non-human primates after a single injection into the cerebrospinal fluid without causing overexpression symptoms up to 18 months after injection. Additionally, this new vector is highly efficacious at lower doses compared with previous constructs as demonstrated in extensive efficacy studies performed by two independent laboratories in two different Rett syndrome mouse models carrying either a knockout or one of the most frequent human mutations of Mecp2. Overall, data from this multicenter study highlight the efficacy and safety of this gene therapy construct, making it a promising candidate for first-in-human studies to treat Rett syndrome.


Asunto(s)
Síndrome de Rett , Humanos , Ratones , Animales , Síndrome de Rett/genética , Síndrome de Rett/terapia , Síndrome de Rett/metabolismo , Primates/genética , Terapia Genética , Mutación
2.
Hum Mol Genet ; 29(21): 3477-3492, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33075805

RESUMEN

Spinal muscular atrophy (SMA) is caused by mutation or deletion of survival motor neuron 1 (SMN1) and retention of SMN2 leading to SMN protein deficiency. We developed an immortalized mouse embryonic fibroblast (iMEF) line in which full-length wild-type Smn (flwt-Smn) can be conditionally deleted using Cre recombinase. iMEFs lacking flwt-Smn are not viable. We tested the SMA patient SMN1 missense mutation alleles A2G, D44V, A111G, E134K and T274I in these cells to determine which human SMN (huSMN) mutant alleles can function in the absence of flwt-Smn. All missense mutant alleles failed to rescue survival in the conditionally deleted iMEFs. Thus, the function lost by these mutations is essential to cell survival. However, co-expression of two different huSMN missense mutants can rescue iMEF survival and small nuclear ribonucleoprotein (snRNP) assembly, demonstrating intragenic complementation of SMN alleles. In addition, we show that a Smn protein lacking exon 2B can rescue iMEF survival and snRNP assembly in the absence of flwt-Smn, indicating exon 2B is not required for the essential function of Smn. For the first time, using this novel cell line, we can assay the function of SMN alleles in the complete absence of flwt-Smn.


Asunto(s)
Atrofia Muscular Espinal/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Alelos , Animales , Supervivencia Celular/genética , Modelos Animales de Enfermedad , Exones/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Integrasas/genética , Ratones , Atrofia Muscular Espinal/patología , Mutación Missense/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética
3.
Hum Mol Genet ; 28(22): 3691-3703, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31127937

RESUMEN

Machado-Joseph disease or spinocerebellar ataxia type 3 is an inherited neurodegenerative disease associated with an abnormal glutamine over-repetition within the ataxin-3 protein. This mutant ataxin-3 protein affects several cellular pathways, leading to neuroinflammation and neuronal death in specific brain regions resulting in severe clinical manifestations. Presently, there is no therapy able to modify the disease progression. Nevertheless, anti-inflammatory pharmacological intervention has been associated with positive outcomes in other neurodegenerative diseases. Thus, the present work aimed at investigating whether ibuprofen treatment would alleviate Machado-Joseph disease. We found that ibuprofen-treated mouse models presented a significant reduction in the neuroinflammation markers, namely Il1b and TNFa mRNA and IKB-α protein phosphorylation levels. Moreover, these mice exhibited neuronal preservation, cerebellar atrophy reduction, smaller mutant ataxin-3 inclusions and motor performance improvement. Additionally, neural cultures of Machado-Joseph disease patients' induced pluripotent stem cells-derived neural stem cells incubated with ibuprofen showed increased levels of neural progenitors proliferation and synaptic markers such as MSI1, NOTCH1 and SYP. These findings were further confirmed in ibuprofen-treated mice that display increased neural progenitor numbers (Ki67 positive) in the subventricular zone. Furthermore, interestingly, ibuprofen treatment enhanced neurite total length and synaptic function of human neurons. Therefore, our results indicate that ibuprofen reduces neuroinflammation and induces neuroprotection, alleviating Machado-Joseph disease-associated neuropathology and motor impairments. Thus, our findings demonstrate that ibuprofen treatment has the potential to be used as a neuroprotective therapeutic approach in Machado-Joseph disease.


Asunto(s)
Ibuprofeno/farmacología , Enfermedad de Machado-Joseph/tratamiento farmacológico , Sinapsis/efectos de los fármacos , Animales , Ataxina-3/metabolismo , Ataxina-3/fisiología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cerebelo/metabolismo , Modelos Animales de Enfermedad , Fibroblastos , Humanos , Ibuprofeno/metabolismo , Células Madre Pluripotentes Inducidas , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/efectos de los fármacos , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Proteínas Nucleares/genética
4.
Cereb Cortex ; 30(6): 3731-3743, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32080705

RESUMEN

Neuronal activity initiates transcriptional programs that shape long-term changes in plasticity. Although neuron subtypes differ in their plasticity response, most activity-dependent transcription factors (TFs) are broadly expressed across neuron subtypes and brain regions. Thus, how region- and neuronal subtype-specific plasticity are established on the transcriptional level remains poorly understood. We report that in young adult (i.e., 6-8 weeks old) mice, the developmental TF SOX11 is induced in neurons within 6 h either by electroconvulsive stimulation or by exploration of a novel environment. Strikingly, SOX11 induction was restricted to the dentate gyrus (DG) of the hippocampus. In the novel environment paradigm, SOX11 was observed in a subset of c-FOS expressing neurons (ca. 15%); whereas around 75% of SOX11+ DG granule neurons were c-FOS+, indicating that SOX11 was induced in an activity-dependent fashion in a subset of neurons. Environmental enrichment or virus-mediated overexpression of SOX11 enhanced the excitability of DG granule cells and downregulated the expression of different potassium channel subunits, whereas conditional Sox11/4 knock-out mice presented the opposite phenotype. We propose that Sox11 is regulated in an activity-dependent fashion, which is specific to the DG, and speculate that activity-dependent Sox11 expression may participate in the modulation of DG neuron plasticity.


Asunto(s)
Giro Dentado/metabolismo , Conducta Exploratoria/fisiología , Regulación de la Expresión Génica , Plasticidad Neuronal/genética , Neuronas/metabolismo , Factores de Transcripción SOXC/genética , Animales , Electrochoque , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Proteínas Proto-Oncogénicas c-fos/metabolismo , Factores de Transcripción SOXC/metabolismo
5.
EMBO J ; 35(15): 1656-76, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27334615

RESUMEN

A GGGGCC hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). C9orf72 encodes two C9orf72 protein isoforms of unclear function. Reduced levels of C9orf72 expression have been reported in C9ALS/FTD patients, and although C9orf72 haploinsufficiency has been proposed to contribute to C9ALS/FTD, its significance is not yet clear. Here, we report that C9orf72 interacts with Rab1a and the Unc-51-like kinase 1 (ULK1) autophagy initiation complex. As a Rab1a effector, C9orf72 controls initiation of autophagy by regulating the Rab1a-dependent trafficking of the ULK1 autophagy initiation complex to the phagophore. Accordingly, reduction of C9orf72 expression in cell lines and primary neurons attenuated autophagy and caused accumulation of p62-positive puncta reminiscent of the p62 pathology observed in C9ALS/FTD patients. Finally, basal levels of autophagy were markedly reduced in C9ALS/FTD patient-derived iNeurons. Thus, our data identify C9orf72 as a novel Rab1a effector in the regulation of autophagy and indicate that C9orf72 haploinsufficiency and associated reductions in autophagy might be the underlying cause of C9ALS/FTD-associated p62 pathology.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Autofagia , Fenómenos Fisiológicos Celulares , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas/metabolismo , Proteínas de Unión al GTP rab1/metabolismo , Proteína C9orf72 , Células Cultivadas , Demencia Frontotemporal/patología , Humanos , Neuronas/química , Neuronas/metabolismo
6.
N Engl J Med ; 377(18): 1713-1722, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-29091557

RESUMEN

BACKGROUND: Spinal muscular atrophy type 1 (SMA1) is a progressive, monogenic motor neuron disease with an onset during infancy that results in failure to achieve motor milestones and in death or the need for mechanical ventilation by 2 years of age. We studied functional replacement of the mutated gene encoding survival motor neuron 1 (SMN1) in this disease. METHODS: Fifteen patients with SMA1 received a single dose of intravenous adeno-associated virus serotype 9 carrying SMN complementary DNA encoding the missing SMN protein. Three of the patients received a low dose (6.7×1013 vg per kilogram of body weight), and 12 received a high dose (2.0×1014 vg per kilogram). The primary outcome was safety. The secondary outcome was the time until death or the need for permanent ventilatory assistance. In exploratory analyses, we compared scores on the CHOP INTEND (Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders) scale of motor function (ranging from 0 to 64, with higher scores indicating better function) in the two cohorts and motor milestones in the high-dose cohort with scores in studies of the natural history of the disease (historical cohorts). RESULTS: As of the data cutoff on August 7, 2017, all 15 patients were alive and event-free at 20 months of age, as compared with a rate of survival of 8% in a historical cohort. In the high-dose cohort, a rapid increase from baseline in the score on the CHOP INTEND scale followed gene delivery, with an increase of 9.8 points at 1 month and 15.4 points at 3 months, as compared with a decline in this score in a historical cohort. Of the 12 patients who had received the high dose, 11 sat unassisted, 9 rolled over, 11 fed orally and could speak, and 2 walked independently. Elevated serum aminotransferase levels occurred in 4 patients and were attenuated by prednisolone. CONCLUSIONS: In patients with SMA1, a single intravenous infusion of adeno-associated viral vector containing DNA coding for SMN resulted in longer survival, superior achievement of motor milestones, and better motor function than in historical cohorts. Further studies are necessary to confirm the safety and efficacy of this gene therapy. (Funded by AveXis and others; ClinicalTrials.gov number, NCT02122952 .).


Asunto(s)
Terapia Genética , Atrofias Musculares Espinales de la Infancia/terapia , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Estudios de Cohortes , Dependovirus , Supervivencia sin Enfermedad , Femenino , Terapia Genética/efectos adversos , Vectores Genéticos , Estudio Históricamente Controlado , Humanos , Lactante , Recién Nacido , Infusiones Intravenosas , Hepatopatías/etiología , Masculino , Destreza Motora , Apoyo Nutricional , Respiración Artificial , Atrofias Musculares Espinales de la Infancia/genética , Atrofias Musculares Espinales de la Infancia/fisiopatología
7.
Mol Ther ; 27(10): 1836-1847, 2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31331814

RESUMEN

CLN6-Batten disease, a form of neuronal ceroid lipofuscinosis is a rare lysosomal storage disorder presenting with gradual declines in motor, visual, and cognitive abilities and early death by 12-15 years of age. We developed a self-complementary adeno-associated virus serotype 9 (scAAV9) vector expressing the human CLN6 gene under the control of a chicken ß-actin (CB) hybrid promoter. Intrathecal delivery of scAAV9.CB.hCLN6 into the cerebrospinal fluid (CSF) of the lumbar spinal cord of 4-year-old non-human primates was safe, well tolerated, and led to efficient targeting throughout the brain and spinal cord. A single intracerebroventricular (i.c.v.) injection at post-natal day 1 in Cln6 mutant mice delivered scAAV9.CB.CLN6 directly into the CSF, and it prevented or drastically reduced all of the pathological hallmarks of Batten disease. Moreover, there were significant improvements in motor performance, learning and memory deficits, and survival in treated Cln6 mutant mice, extending survival from 15 months of age (untreated) to beyond 21 months of age (treated). Additionally, many parameters were similar to wild-type counterparts throughout the lifespan of the treated mice.


Asunto(s)
Dependovirus/genética , Terapia Genética/métodos , Proteínas de la Membrana/genética , Lipofuscinosis Ceroideas Neuronales/psicología , Lipofuscinosis Ceroideas Neuronales/terapia , Actinas/genética , Animales , Vectores Genéticos/administración & dosificación , Vectores Genéticos/efectos adversos , Humanos , Infusiones Intraventriculares , Inyecciones Espinales , Aprendizaje/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Ratones , Actividad Motora/efectos de los fármacos , Mutación , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/metabolismo , Primates , Regiones Promotoras Genéticas , Resultado del Tratamiento
8.
Proc Natl Acad Sci U S A ; 113(42): E6496-E6505, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27688759

RESUMEN

Oligodendrocytes have recently been implicated in the pathophysiology of amyotrophic lateral sclerosis (ALS). Here we show that, in vitro, mutant superoxide dismutase 1 (SOD1) mouse oligodendrocytes induce WT motor neuron (MN) hyperexcitability and death. Moreover, we efficiently derived human oligodendrocytes from a large number of controls and patients with sporadic and familial ALS, using two different reprogramming methods. All ALS oligodendrocyte lines induced MN death through conditioned medium (CM) and in coculture. CM-mediated MN death was associated with decreased lactate production and release, whereas toxicity in coculture was lactate-independent, demonstrating that MN survival is mediated not only by soluble factors. Remarkably, human SOD1 shRNA treatment resulted in MN rescue in both mouse and human cultures when knockdown was achieved in progenitor cells, whereas it was ineffective in differentiated oligodendrocytes. In fact, early SOD1 knockdown rescued lactate impairment and cell toxicity in all lines tested, with the exclusion of samples carrying chromosome 9 ORF 72 (C9orf72) repeat expansions. These did not respond to SOD1 knockdown nor did they show lactate release impairment. Our data indicate that SOD1 is directly or indirectly involved in ALS oligodendrocyte pathology and suggest that in this cell type, some damage might be irreversible. In addition, we demonstrate that patients with C9ORF72 represent an independent patient group that might not respond to the same treatment.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Neuronas Motoras/metabolismo , Oligodendroglía/metabolismo , Superóxido Dismutasa-1/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Apoptosis , Biomarcadores , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Comunicación Celular , Muerte Celular , Diferenciación Celular , Supervivencia Celular , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Ácido Láctico/metabolismo , Ratones , Ratones Transgénicos , Mutación , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Oligodendroglía/citología , Superóxido Dismutasa-1/metabolismo
9.
Mol Ther ; 25(4): 870-879, 2017 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-28279643

RESUMEN

Sporadic inclusion body myositis, a variant of inflammatory myopathy, has features distinct from polymyositis/dermatomyositis. The disease affects men more than women, most commonly after age 50. Clinical features include weakness of the quadriceps, finger flexors, ankle dorsiflexors, and dysphagia. The distribution of weakness is similar to Becker muscular dystrophy, where we previously reported improvement following intramuscular injection of an isoform of follistatin (FS344) by AAV1. For this clinical trial, rAAV1.CMV.huFS344, 6 × 1011 vg/kg, was delivered to the quadriceps muscles of both legs of six sporadic inclusion body myositis subjects. The primary outcome for this trial was distance traveled for the 6-min walk test. The protocol included an exercise regimen for each participant. Performance, annualized to a median 1-year change, improved +56.0 m/year for treated subjects compared to a decline of -25.8 m/year (p = 0.01) in untreated subjects (n = 8), matched for age, gender, and baseline measures. Four of the six treated subjects showed increases ranging from 58-153 m, whereas two were minimally improved (5-23 m). Treatment effects included decreased fibrosis and improved regeneration. These findings show promise for follistatin gene therapy for mild to moderately affected, ambulatory sporadic inclusion body myositis patients. More advanced disease with discernible muscle loss poses challenges.


Asunto(s)
Folistatina/genética , Terapia Genética , Miositis por Cuerpos de Inclusión/genética , Miositis por Cuerpos de Inclusión/terapia , Proteínas Quinasas Activadas por AMP/metabolismo , Anciano , Animales , Biomarcadores , Biopsia , Dependovirus/genética , Dependovirus/inmunología , Estudios de Seguimiento , Dosificación de Gen , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Vectores Genéticos/efectos adversos , Vectores Genéticos/genética , Humanos , Masculino , Ratones , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Miositis por Cuerpos de Inclusión/diagnóstico , Recuperación de la Función , Serina-Treonina Quinasas TOR/metabolismo , Resultado del Tratamiento , Prueba de Paso
10.
Mol Cell Neurosci ; 80: 180-191, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27965018

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating disease characterized by the progressive loss of motor neurons. Neurons, astrocytes, oligodendrocytes and microglial cells all undergo pathological modifications in the onset and progression of ALS. A number of genes involved in the etiopathology of the disease have been identified, but a complete understanding of the molecular mechanisms of ALS has yet to be determined. Currently, people affected by ALS have a life expectancy of only two to five years from diagnosis. The search for a treatment has been slow and mostly unsuccessful, leaving patients in desperate need of better therapies. Until recently, most pre-clinical studies utilized the available ALS animal models. In the past years, the development of new protocols for isolation of patient cells and differentiation into relevant cell types has provided new tools to model ALS, potentially more relevant to the disease itself as they directly come from patients. The use of stem cells is showing promise to facilitate ALS research by expanding our understanding of the disease and help to identify potential new therapeutic targets and therapies to help patients. Advancements in high content analysis (HCA) have the power to contribute to move ALS research forward by combining automated image acquisition along with digital image analysis. With modern HCA machines it is possible, in a period of just a few hours, to observe changes in morphology and survival of cells, under the stimulation of hundreds, if not thousands of drugs and compounds. In this article, we will summarize the major molecular and cellular hallmarks of ALS, describe the advancements provided by the in vitro models developed in the last few years, and review the studies that have applied HCA to the ALS field to date.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Humanos
11.
Proc Natl Acad Sci U S A ; 112(50): E6993-7002, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26621731

RESUMEN

Ubiquitous expression of amyotrophic lateral sclerosis (ALS)-causing mutations in superoxide dismutase 1 (SOD1) provokes noncell autonomous paralytic disease. By combining ribosome affinity purification and high-throughput sequencing, a cascade of mutant SOD1-dependent, cell type-specific changes are now identified. Initial mutant-dependent damage is restricted to motor neurons and includes synapse and metabolic abnormalities, endoplasmic reticulum (ER) stress, and selective activation of the PRKR-like ER kinase (PERK) arm of the unfolded protein response. PERK activation correlates with what we identify as a naturally low level of ER chaperones in motor neurons. Early changes in astrocytes occur in genes that are involved in inflammation and metabolism and are targets of the peroxisome proliferator-activated receptor and liver X receptor transcription factors. Dysregulation of myelination and lipid signaling pathways and activation of ETS transcription factors occur in oligodendrocytes only after disease initiation. Thus, pathogenesis involves a temporal cascade of cell type-selective damage initiating in motor neurons, with subsequent damage within glia driving disease propagation.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Perfilación de la Expresión Génica , Neuronas Motoras/metabolismo , Mutación , Neuroglía/metabolismo , Biosíntesis de Proteínas , Superóxido Dismutasa/genética , Anciano , Esclerosis Amiotrófica Lateral/patología , Animales , Astrocitos/metabolismo , Astrocitos/patología , Humanos , Ratones , Neuronas Motoras/patología , Neuroglía/patología , Superóxido Dismutasa-1
12.
Nature ; 475(7357): 497-500, 2011 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-21716289

RESUMEN

Rett's syndrome (RTT) is an X-chromosome-linked autism spectrum disorder caused by loss of function of the transcription factor methyl-CpG-binding protein 2 (MeCP2). Although MeCP2 is expressed in most tissues, loss of MeCP2 expression results primarily in neurological symptoms. Earlier studies suggested the idea that RTT is due exclusively to loss of MeCP2 function in neurons. Although defective neurons clearly underlie the aberrant behaviours, we and others showed recently that the loss of MECP2 from glia negatively influences neurons in a non-cell-autonomous fashion. Here we show that in globally MeCP2-deficient mice, re-expression of Mecp2 preferentially in astrocytes significantly improved locomotion and anxiety levels, restored respiratory abnormalities to a normal pattern, and greatly prolonged lifespan compared to globally null mice. Furthermore, restoration of MeCP2 in the mutant astrocytes exerted a non-cell-autonomous positive effect on mutant neurons in vivo, restoring normal dendritic morphology and increasing levels of the excitatory glutamate transporter VGLUT1. Our study shows that glia, like neurons, are integral components of the neuropathology of RTT, and supports the targeting of glia as a strategy for improving the associated symptoms.


Asunto(s)
Neuroglía/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Animales , Ansiedad/metabolismo , Astrocitos/metabolismo , Conducta Animal , Progresión de la Enfermedad , Femenino , Regulación de la Expresión Génica , Masculino , Proteína 2 de Unión a Metil-CpG/deficiencia , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Ratones Endogámicos C57BL , Actividad Motora , Neuroglía/patología , Neuronas/metabolismo , Síndrome de Rett/fisiopatología , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
13.
Proc Natl Acad Sci U S A ; 111(2): 829-32, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24379375

RESUMEN

Amyotrophic lateral sclerosis (ALS) causes motor neuron degeneration, paralysis, and death. Accurate disease modeling, identifying disease mechanisms, and developing therapeutics is urgently needed. We previously reported motor neuron toxicity through postmortem ALS spinal cord-derived astrocytes. However, these cells can only be harvested after death, and their expansion is limited. We now report a rapid, highly reproducible method to convert adult human fibroblasts from living ALS patients to induced neuronal progenitor cells and subsequent differentiation into astrocytes (i-astrocytes). Non-cell autonomous toxicity to motor neurons is found following coculture of i-astrocytes from familial ALS patients with mutation in superoxide dismutase or hexanucleotide expansion in C9orf72 (ORF 72 on chromosome 9) the two most frequent causes of ALS. Remarkably, i-astrocytes from sporadic ALS patients are as toxic as those with causative mutations, suggesting a common mechanism. Easy production and expansion of i-astrocytes now enables rapid disease modeling and high-throughput drug screening to alleviate astrocyte-derived toxicity.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Astrocitos/citología , Desdiferenciación Celular/fisiología , Diferenciación Celular/fisiología , Fibroblastos/citología , Neuronas Motoras/patología , Células-Madre Neurales/citología , Análisis de Varianza , Astrocitos/metabolismo , Comunicación Celular , Técnicas de Cultivo de Célula , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente , Humanos , Modelos Biológicos , Neuronas Motoras/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
14.
J Neurosci ; 35(3): 1274-90, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25609641

RESUMEN

Adult progenitor cells proliferate in the acutely injured spinal cord and their progeny differentiate into new oligodendrocytes (OLs) that remyelinate spared axons. Whether this endogenous repair continues beyond the first week postinjury (wpi), however, is unknown. Identifying the duration of this response is essential for guiding therapies targeting improved recovery from spinal cord injury (SCI) by enhancing OL survival and/or remyelination. Here, we used two PDGFRα-reporter mouse lines and rats injected with a GFP-retrovirus to assess progenitor fate through 80 d after injury. Surprisingly, new OLs were generated as late as 3 months after injury and their processes ensheathed axons near and distal to the lesion, colocalized with MBP, and abutted Caspr+ profiles, suggesting newly formed myelin. Semithin sections confirmed stereotypical thin OL remyelination and few bare axons at 10 wpi, indicating that demyelination is relatively rare. Astrocytes in chronic tissue expressed the pro-OL differentiation and survival factors CNTF and FGF-2. In addition, pSTAT3+ NG2 cells were present through at least 5 wpi, revealing active signaling of the Jak/STAT pathway in these cells. The progenitor cell fate genes Sox11, Hes5, Id2, Id4, BMP2, and BMP4 were dynamically regulated for at least 4 wpi. Collectively, these data verify that the chronically injured spinal cord is highly dynamic. Endogenous repair, including oligodendrogenesis and remyelination, continues for several months after SCI, potentially in response to growth factors and/or transcription factor changes. Identifying and understanding spontaneous repair processes such as these is important so that beneficial plasticity is not inadvertently interrupted and effort is not exerted to needlessly duplicate ongoing spontaneous repair.


Asunto(s)
Diferenciación Celular/fisiología , Enfermedades Desmielinizantes/fisiopatología , Regeneración Nerviosa/fisiología , Oligodendroglía/fisiología , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Animales , Enfermedades Desmielinizantes/patología , Femenino , Masculino , Ratones , Oligodendroglía/citología , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/patología
15.
Ann Neurol ; 77(3): 399-414, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25516063

RESUMEN

OBJECTIVES: Spinal muscular atrophy (SMA) is caused by reduced levels of survival motor neuron (SMN) protein, which results in motoneuron loss. Therapeutic strategies to increase SMN levels including drug compounds, antisense oligonucleotides, and scAAV9 gene therapy have proved effective in mice. We wished to determine whether reduction of SMN in postnatal motoneurons resulted in SMA in a large animal model, whether SMA could be corrected after development of muscle weakness, and the response of clinically relevant biomarkers. METHODS: Using intrathecal delivery of scAAV9 expressing an shRNA targeting pig SMN1, SMN was knocked down in motoneurons postnatally to SMA levels. This resulted in an SMA phenotype representing the first large animal model of SMA. Restoration of SMN was performed at different time points with scAAV9 expressing human SMN (scAAV9-SMN), and electrophysiology measurements and pathology were performed. RESULTS: Knockdown of SMN in postnatal motoneurons results in overt proximal weakness, fibrillations on electromyography indicating active denervation, and reduced compound muscle action potential (CMAP) and motor unit number estimation (MUNE), as in human SMA. Neuropathology showed loss of motoneurons and motor axons. Presymptomatic delivery of scAAV9-SMN prevented SMA symptoms, indicating that all changes are SMN dependent. Delivery of scAAV9-SMN after symptom onset had a marked impact on phenotype, electrophysiological measures, and pathology. INTERPRETATION: High SMN levels are critical in postnatal motoneurons, and reduction of SMN results in an SMA phenotype that is SMN dependent. Importantly, clinically relevant biomarkers including CMAP and MUNE are responsive to SMN restoration, and abrogation of phenotype can be achieved even after symptom onset.


Asunto(s)
Modelos Animales de Enfermedad , Terapia Genética/métodos , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/terapia , Proteínas del Complejo SMN/metabolismo , Animales , Biomarcadores , Dependovirus/genética , Electromiografía , Vectores Genéticos/uso terapéutico , Humanos , Neuronas Motoras/patología , Atrofia Muscular Espinal/etiología , Atrofia Muscular Espinal/patología , Atrofia Muscular Espinal/fisiopatología , Fenotipo , ARN Interferente Pequeño/uso terapéutico , Proteínas del Complejo SMN/genética , Porcinos
16.
Brain ; 138(Pt 2): 320-35, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25527827

RESUMEN

Machado-Joseph disease is a neurodegenerative disease without effective treatment. Patients with Machado-Joseph disease exhibit significant motor impairments such as gait ataxia, associated with multiple neuropathological changes including mutant ATXN3 inclusions, marked neuronal loss and atrophy of the cerebellum. Thus, an effective treatment of symptomatic patients with Machado-Joseph disease may require cell replacement, which we investigated in this study. For this purpose, we injected cerebellar neural stem cells into the cerebellum of adult Machado-Joseph disease transgenic mice and assessed the effect on the neuropathology, neuroinflammation mediators and neurotrophic factor levels and motor coordination. We found that upon transplantation into the cerebellum of adult Machado-Joseph disease mice, cerebellar neural stem cells differentiate into neurons, astrocytes and oligodendrocytes. Importantly, cerebellar neural stem cell transplantation mediated a significant and robust alleviation of the motor behaviour impairments, which correlated with preservation from Machado-Joseph disease-associated neuropathology, namely reduction of Purkinje cell loss, reduction of cellular layer shrinkage and mutant ATXN3 aggregates. Additionally, a significant reduction of neuroinflammation and an increase of neurotrophic factors levels was observed, indicating that transplantation of cerebellar neural stem cells also triggers important neuroprotective effects. Thus, cerebellar neural stem cells have the potential to be used as a cell replacement and neuroprotective approach for Machado-Joseph disease therapy.


Asunto(s)
Ataxia/terapia , Cerebelo/citología , Enfermedad de Machado-Joseph/terapia , Células-Madre Neurales/trasplante , Animales , Ataxia/etiología , Ataxia/patología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Diferenciación Celular , Separación Celular , Células Cultivadas , Enfermedad de Machado-Joseph/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuritis/etiología , Neuritis/terapia , Desempeño Psicomotor , Receptores de Neurotransmisores/metabolismo
17.
Mol Ther ; 23(3): 477-87, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25358252

RESUMEN

Spinal muscular atrophy (SMA) is the most frequent lethal genetic neurodegenerative disorder in infants. The disease is caused by low abundance of the survival of motor neuron (SMN) protein leading to motor neuron degeneration and progressive paralysis. We previously demonstrated that a single intravenous injection (IV) of self-complementary adeno-associated virus-9 carrying the human SMN cDNA (scAAV9-SMN) resulted in widespread transgene expression in spinal cord motor neurons in SMA mice as well as nonhuman primates and complete rescue of the disease phenotype in mice. Here, we evaluated the dosing and efficacy of scAAV9-SMN delivered directly to the cerebral spinal fluid (CSF) via single injection. We found widespread transgene expression throughout the spinal cord in mice and nonhuman primates when using a 10 times lower dose compared to the IV application. Interestingly, in nonhuman primates, lower doses than in mice can be used for similar motor neuron targeting efficiency. Moreover, the transduction efficacy is further improved when subjects are kept in the Trendelenburg position to facilitate spreading of the vector. We present a detailed analysis of transduction levels throughout the brain, brainstem, and spinal cord of nonhuman primates, providing new guidance for translation toward therapy for a wide range of neurodegenerative disorders.


Asunto(s)
Dependovirus/genética , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Atrofia Muscular Espinal/terapia , Médula Espinal/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Animales , Animales Recién Nacidos , Tronco Encefálico/metabolismo , Corteza Cerebral/metabolismo , ADN Complementario/administración & dosificación , ADN Complementario/genética , ADN Complementario/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Expresión Génica , Vectores Genéticos/farmacocinética , Inyecciones Epidurales , Macaca fascicularis , Ratones , Ratones Noqueados , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Médula Espinal/patología , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Transducción Genética , Transgenes
18.
Mol Ther ; 23(1): 192-201, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25322757

RESUMEN

Becker muscular dystrophy (BMD) is a variant of dystrophin deficiency resulting from DMD gene mutations. Phenotype is variable with loss of ambulation in late teenage or late mid-life years. There is currently no treatment for this condition. In this BMD proof-of-principle clinical trial, a potent myostatin antagonist, follistatin (FS), was used to inhibit the myostatin pathway. Extensive preclinical studies, using adeno-associated virus (AAV) to deliver follistatin, demonstrated an increase in strength. For this trial, we used the alternatively spliced FS344 to avoid potential binding to off target sites. AAV1.CMV.FS344 was delivered to six BMD patients by direct bilateral intramuscular quadriceps injections. Cohort 1 included three subjects receiving 3 × 10(11) vg/kg/leg. The distance walked on the 6MWT was the primary outcome measure. Patients 01 and 02 improved 58 meters (m) and 125 m, respectively. Patient 03 showed no change. In Cohort 2, Patients 05 and 06 received 6 × 10(11) vg/kg/leg with improved 6MWT by 108 m and 29 m, whereas, Patient 04 showed no improvement. No adverse effects were encountered. Histological changes corroborated benefit showing reduced endomysial fibrosis, reduced central nucleation, more normal fiber size distribution with muscle hypertrophy, especially at high dose. The results are encouraging for treatment of dystrophin-deficient muscle diseases.


Asunto(s)
Distrofina/deficiencia , Proteínas Relacionadas con la Folistatina/genética , Terapia Genética/métodos , Distrofia Muscular de Duchenne/terapia , Miostatina/genética , Adulto , Dependovirus/genética , Distrofina/genética , Proteínas Relacionadas con la Folistatina/metabolismo , Expresión Génica , Vectores Genéticos , Humanos , Inyecciones Intramusculares , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Miostatina/antagonistas & inhibidores , Miostatina/metabolismo
19.
J Neurosci ; 34(47): 15587-600, 2014 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-25411487

RESUMEN

Sporadic amyotrophic lateral sclerosis (ALS) is a fatal disease with unknown etiology, characterized by a progressive loss of motor neurons leading to paralysis and death typically within 3-5 years of onset. Recently, there has been remarkable progress in understanding inherited forms of ALS in which well defined mutations are known to cause the disease. Rodent models in which the superoxide dismutase-1 (SOD1) mutation is overexpressed recapitulate hallmark signs of ALS in patients. Early anatomical changes in mouse models of fALS are seen in the neuromuscular junctions (NMJs) and lower motor neurons, and selective reduction of toxic mutant SOD1 in the spinal cord and muscle of these models has beneficial effects. Therefore, much of ALS research has focused on spinal motor neuron and NMJ aspects of the disease. Here we show that, in the SOD1(G93A) rat model of ALS, spinal motor neuron loss occurs presymptomatically and before degeneration of ventral root axons and denervation of NMJs. Although overt cell death of corticospinal motor neurons does not occur until disease endpoint, we wanted to establish whether the upper motor neuron might still play a critical role in disease progression. Surprisingly, the knockdown of mutant SOD1 in only the motor cortex of presymptomatic SOD1(G93A) rats through targeted delivery of AAV9-SOD1-shRNA resulted in a significant delay of disease onset, expansion of lifespan, enhanced survival of spinal motor neurons, and maintenance of NMJs. This datum suggests an early dysfunction and thus an important role of the upper motor neuron in this animal model of ALS and perhaps patients with the disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Corteza Motora/enzimología , Corteza Motora/patología , Superóxido Dismutasa/genética , Superóxido Dismutasa/fisiología , Esclerosis Amiotrófica Lateral/mortalidad , Animales , Muerte Celular/efectos de los fármacos , Femenino , Técnicas de Silenciamiento del Gen , Herpesvirus Suido 1/genética , Humanos , Masculino , Ratones , Unión Neuromuscular/efectos de los fármacos , Neuronas/patología , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Superóxido Dismutasa-1 , Transfección
20.
Hum Mol Genet ; 22(24): 4929-37, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23863459

RESUMEN

Pharmacologic strategies have provided modest improvement in the devastating muscle-wasting disease, Duchenne muscular dystrophy (DMD). Pre-clinical gene therapy studies have shown promise in the mdx mouse model; however, studies conducted after disease onset fall short of fully correcting muscle strength or protecting against contraction-induced injury. Here we examine the treatment effect on muscle physiology in aged dystrophic mice with significant disease pathology by combining two promising therapies: micro-dystrophin gene replacement and muscle enhancement with follistatin, a potent myostatin inhibitor. Individual treatments with micro-dystrophin and follistatin demonstrated marked improvement in mdx mice but were insufficient to fully restore muscle strength and response to injury to wild-type levels. Strikingly, when combined, micro-dystrophin/follistatin treatment restored force generation and conferred resistance to contraction-induced injury in aged mdx mice. Pre-clinical studies with miniature dystrophins have failed to demonstrate full correction of the physiological defects seen in mdx mice. Importantly, the addition of a muscle enhancement strategy with delivery of follistatin in combination with micro-dystrophin gene therapy completely restored resistance to eccentric contraction-induced injury and improved force. Eccentric contraction-induced injury is a pre-clinical parameter relevant to the exercise induced injury that occurs in DMD patients, and herein, we demonstrate compelling evidence for the therapeutic potential of micro-dystrophin/follistatin combinatorial therapy.


Asunto(s)
Distrofina/genética , Folistatina/genética , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Distrofina/metabolismo , Folistatina/metabolismo , Expresión Génica , Técnicas de Transferencia de Gen , Terapia Genética , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Ratones , Ratones Endogámicos mdx , Contracción Muscular/genética , Fuerza Muscular/genética , Músculo Esquelético/patología , Distrofia Muscular Animal , Distrofia Muscular de Duchenne/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA