Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 78(3): 445-458.e6, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32197065

RESUMEN

Paternal dietary conditions may contribute to metabolic disorders in offspring. We have analyzed the role of the stress-dependent epigenetic regulator cyclic AMP-dependent transcription factor 7 (ATF7) in paternal low-protein diet (pLPD)-induced gene expression changes in mouse liver. Atf7+/- mutations cause an offspring phenotype similar to that caused by pLPD, and the effect of pLPD almost vanished when paternal Atf7+/- mice were used. ATF7 binds to the promoter regions of ∼2,300 genes, including cholesterol biosynthesis-related and tRNA genes in testicular germ cells (TGCs). LPD induces ATF7 phosphorylation by p38 via reactive oxygen species (ROS) in TGCs. This leads to the release of ATF7 and a decrease in histone H3K9 dimethylation (H3K9me2) on its target genes. These epigenetic changes are maintained and induce expression of some tRNA fragments in spermatozoa. These results indicate that LPD-induced and ATF7-dependent epigenetic changes in TGCs play an important role in paternal diet-induced metabolic reprograming in offspring.


Asunto(s)
Factores de Transcripción Activadores/genética , Dieta con Restricción de Proteínas , Epigénesis Genética , Hígado/fisiología , Espermatozoides/fisiología , Factores de Transcripción Activadores/metabolismo , Animales , Femenino , Regulación de la Expresión Génica , Histonas/metabolismo , Lisina/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Mutación , Fosforilación , Regiones Promotoras Genéticas
2.
Cell ; 146(2): 233-46, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21784245

RESUMEN

Transcription hinders replication fork progression and stability, and the Mec1/ATR checkpoint protects fork integrity. Examining checkpoint-dependent mechanisms controlling fork stability, we find that fork reversal and dormant origin firing due to checkpoint defects are rescued in checkpoint mutants lacking THO, TREX-2, or inner-basket nucleoporins. Gene gating tethers transcribed genes to the nuclear periphery and is counteracted by checkpoint kinases through phosphorylation of nucleoporins such as Mlp1. Checkpoint mutants fail to detach transcribed genes from nuclear pores, thus generating topological impediments for incoming forks. Releasing this topological complexity by introducing a double-strand break between a fork and a transcribed unit prevents fork collapse. Mlp1 mutants mimicking constitutive checkpoint-dependent phosphorylation also alleviate checkpoint defects. We propose that the checkpoint assists fork progression and stability at transcribed genes by phosphorylating key nucleoporins and counteracting gene gating, thus neutralizing the topological tension generated at nuclear pore gated genes.


Asunto(s)
Replicación del ADN , Poro Nuclear/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Quinasa de Punto de Control 2 , Roturas del ADN de Doble Cadena , Hidroxiurea/farmacología , Mutación , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Mol Cell ; 68(4): 758-772.e4, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29129641

RESUMEN

Replication fork integrity is challenged in conditions of stress and protected by the Mec1/ATR checkpoint to preserve genome stability. Still poorly understood in fork protection is the role played by the structural maintenance of chromosomes (SMC) cohesin complex. We uncovered a role for the Rsp5Bul2 ubiquitin ligase in promoting survival to replication stress by preserving stalled fork integrity. Rsp5Bul2 physically interacts with cohesin and the Mec1 kinase, thus promoting checkpoint-dependent cohesin ubiquitylation and cohesin-mediated fork protection. Ubiquitylation mediated by Rsp5Bul2 promotes cohesin mobilization from chromatin neighboring stalled forks, likely by stimulating the Cdc48/p97 ubiquitin-selective segregase, and its timely association to nascent chromatids. This Rsp5Bul2 fork protection mechanism requires the Wpl1 cohesin mobilizer as well as the function of the Eco1 acetyltransferase securing sister chromatid entrapment. Our data indicate that ubiquitylation facilitates cohesin dynamic interfacing with replication forks within a mechanism preserving stalled-fork functional architecture.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Replicación del ADN/fisiología , ADN de Hongos/biosíntesis , Saccharomyces cerevisiae/metabolismo , Ubiquitinación/fisiología , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , ADN de Hongos/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Proteína que Contiene Valosina/genética , Proteína que Contiene Valosina/metabolismo , Cohesinas
4.
Cell ; 138(5): 870-84, 2009 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-19737516

RESUMEN

Specialized topoisomerases solve the topological constraints arising when replication forks encounter transcription. We have investigated the contribution of Top2 in S phase transcription. Specifically in S phase, Top2 binds intergenic regions close to transcribed genes. The Top2-bound loci exhibit low nucleosome density and accumulate gammaH2A when Top2 is defective. These intergenic loci associate with the HMG protein Hmo1 throughout the cell cycle and are refractory to the histone variant Htz1. In top2 mutants, Hmo1 is deleterious and accumulates at pericentromeric regions in G2/M. Our data indicate that Top2 is dispensable for transcription and that Hmo1 and Top2 bind in the proximity of genes transcribed in S phase suppressing chromosome fragility at the M-G1 transition. We propose that an Hmo1-dependent epigenetic signature together with Top2 mediate an S phase architectural pathway to preserve genome integrity.


Asunto(s)
Replicación del ADN , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Fase S , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Fragilidad Cromosómica , Epigénesis Genética , Genoma Fúngico , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología
5.
EMBO Rep ; 21(6): e50257, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32307893

RESUMEN

The Mps1 kinase corrects improper kinetochore-microtubule attachments, thereby ensuring chromosome biorientation. Yet, its critical phosphorylation targets in this process remain largely elusive. Mps1 also controls the spindle assembly checkpoint (SAC), which halts chromosome segregation until biorientation is attained. Its role in SAC activation is antagonised by the PP1 phosphatase and involves phosphorylation of the kinetochore scaffold Knl1/Spc105, which in turn recruits the Bub1 kinase to promote assembly of SAC effector complexes. A crucial question is whether error correction and SAC activation are part of a single or separable pathways. Here, we isolate and characterise a new yeast mutant, mps1-3, that is severely defective in chromosome biorientation and SAC signalling. Through an unbiased screen for extragenic suppressors, we found that mutations lowering PP1 levels at Spc105 or forced association of Bub1 with Spc105 reinstate both chromosome biorientation and SAC signalling in mps1-3 cells. Our data argue that a common mechanism based on Knl1/Spc105 phosphorylation is critical for Mps1 function in error correction and SAC signalling, thus supporting the idea that a single sensory apparatus simultaneously elicits both pathways.


Asunto(s)
Segregación Cromosómica , Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/genética , Cinetocoros , Puntos de Control de la Fase M del Ciclo Celular/genética , Proteínas de Saccharomyces cerevisiae/genética , Huso Acromático/genética
6.
Mol Cell ; 50(5): 661-74, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23746350

RESUMEN

Centromeres play several important roles in ensuring proper chromosome segregation. Not only do they promote kinetochore assembly for microtubule attachment, but they also support robust sister chromatid cohesion at pericentromeres and facilitate replication of centromeric DNA early in S phase. However, it is still elusive how centromeres orchestrate all these functions at the same site. Here, we show that the budding yeast Dbf4-dependent kinase (DDK) accumulates at kinetochores in telophase, facilitated by the Ctf19 kinetochore complex. This promptly recruits Sld3-Sld7 replication initiator proteins to pericentromeric replication origins so that they initiate replication early in S phase. Furthermore, DDK at kinetochores independently recruits the Scc2-Scc4 cohesin loader to centromeres in G1 phase. This enhances cohesin loading and facilitates robust pericentromeric cohesion in S phase. Thus, we have found the central mechanism by which kinetochores orchestrate early S phase DNA replication and robust sister chromatid cohesion at microtubule attachment sites.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Cinetocoros/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Centrómero/genética , Centrómero/metabolismo , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Fase S/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
7.
PLoS Genet ; 14(11): e1007783, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30418970

RESUMEN

Elg1, the major subunit of a Replication Factor C-like complex, is critical to ensure genomic stability during DNA replication, and is implicated in controlling chromatin structure. We investigated the consequences of Elg1 loss for the dynamics of chromatin re-formation following DNA replication. Measurement of Okazaki fragment length and the micrococcal nuclease sensitivity of newly replicated DNA revealed a defect in nucleosome organization in the absence of Elg1. Using a proteomic approach to identify Elg1 binding partners, we discovered that Elg1 interacts with Rtt106, a histone chaperone implicated in replication-coupled nucleosome assembly that also regulates transcription. A central role for Elg1 is the unloading of PCNA from chromatin following DNA replication, so we examined the relative importance of Rtt106 and PCNA unloading for chromatin reassembly following DNA replication. We find that the major cause of the chromatin organization defects of an ELG1 mutant is PCNA retention on DNA following replication, with Rtt106-Elg1 interaction potentially playing a contributory role.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Replicación del ADN , Genes Fúngicos , Inestabilidad Genómica , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Proteómica , Proteína de Replicación C/genética , Proteína de Replicación C/metabolismo
8.
EMBO Rep ; 19(9)2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30104203

RESUMEN

Despite its evolutionarily conserved function in controlling DNA replication, the chromosomal binding sites of the budding yeast Rif1 protein are not well understood. Here, we analyse genome-wide binding of budding yeast Rif1 by chromatin immunoprecipitation, during G1 phase and in S phase with replication progressing normally or blocked by hydroxyurea. Rif1 associates strongly with telomeres through interaction with Rap1. By comparing genomic binding of wild-type Rif1 and truncated Rif1 lacking the Rap1-interaction domain, we identify hundreds of Rap1-dependent and Rap1-independent chromosome interaction sites. Rif1 binds to centromeres, highly transcribed genes and replication origins in a Rap1-independent manner, associating with both early and late-initiating origins. Interestingly, Rif1 also binds around activated origins when replication progression is blocked by hydroxyurea, suggesting association with blocked forks. Using nascent DNA labelling and DNA combing techniques, we find that in cells treated with hydroxyurea, yeast Rif1 stabilises recently synthesised DNA Our results indicate that, in addition to controlling DNA replication initiation, budding yeast Rif1 plays an ongoing role after initiation and controls events at blocked replication forks.


Asunto(s)
Replicación del ADN/fisiología , Origen de Réplica/fisiología , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Sitios de Unión/fisiología , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Cromosomas de las Plantas/química , ADN/metabolismo , Momento de Replicación del ADN/fisiología , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Mutación , Proteína Fosfatasa 1/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Fase S/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Complejo Shelterina , Telómero/metabolismo , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/genética , Factores de Transcripción/metabolismo
9.
Mol Cell ; 45(5): 696-704, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22325992

RESUMEN

The S phase checkpoint pathway preserves genome stability by protecting defective DNA replication forks, but the underlying mechanisms are still understood poorly. Previous work with budding yeast suggested that the checkpoint kinases Mec1 and Rad53 might prevent collapse of the replisome when nucleotide concentrations are limiting, thereby allowing the subsequent resumption of DNA synthesis. Here we describe a direct analysis of replisome stability in budding yeast cells lacking checkpoint kinases, together with a high-resolution view of replisome progression across the genome. Surprisingly, we find that the replisome is stably associated with DNA replication forks following replication stress in the absence of Mec1 or Rad53. A component of the replicative DNA helicase is phosphorylated within the replisome in a Mec1-dependent manner upon replication stress, and our data indicate that checkpoint kinases control replisome function rather than stability, as part of a multifaceted response that allows cells to survive defects in chromosome replication.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Replicación del ADN/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Puntos de Control de la Fase S del Ciclo Celular , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Ciclo Celular/genética , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Quinasa de Punto de Control 2 , Inestabilidad Genómica , Péptidos y Proteínas de Señalización Intracelular/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Estrés Fisiológico
10.
Proc Natl Acad Sci U S A ; 114(29): 7671-7676, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28673974

RESUMEN

The partner and localiser of BRCA2 (PALB2) plays important roles in the maintenance of genome integrity and protection against cancer. Although PALB2 is commonly described as a repair factor recruited to sites of DNA breaks, recent studies provide evidence that PALB2 also associates with unperturbed chromatin. Here, we investigated the previously poorly described role of chromatin-associated PALB2 in undamaged cells. We found that PALB2 associates with active genes through its major binding partner, MRG15, which recognizes histone H3 trimethylated at lysine 36 (H3K36me3) by the SETD2 methyltransferase. Missense mutations that ablate PALB2 binding to MRG15 confer elevated sensitivity to the topoisomerase inhibitor camptothecin (CPT) and increased levels of aberrant metaphase chromosomes and DNA stress in gene bodies, which were suppressed by preventing DNA replication. Remarkably, the level of PALB2 at genic regions was frequently decreased, rather than increased, upon CPT treatment. We propose that the steady-state presence of PALB2 at active genes, mediated through the SETD2/H3K36me3/MRG15 axis, ensures an immediate response to DNA stress and therefore effective protection of these regions during DNA replication. This study provides a conceptual advance in demonstrating that the constitutive chromatin association of repair factors plays a key role in the maintenance of genome stability and furthers our understanding of why PALB2 defects lead to human genome instability syndromes.


Asunto(s)
Cromatina/ultraestructura , Daño del ADN , Proteína del Grupo de Complementación N de la Anemia de Fanconi/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Factores de Transcripción/metabolismo , Proteína BRCA2/genética , Línea Celular Tumoral , Cromosomas/ultraestructura , Reparación del ADN , Replicación del ADN , Genoma Humano , Células HEK293 , Células HeLa , Humanos , Concentración 50 Inhibidora , Mutación , Unión Proteica , Proteómica , Transcripción Genética , Proteínas Supresoras de Tumor/metabolismo
11.
Am J Hum Genet ; 99(2): 451-9, 2016 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-27476655

RESUMEN

Cellular homeostasis is maintained by the highly organized cooperation of intracellular trafficking systems, including COPI, COPII, and clathrin complexes. COPI is a coatomer protein complex responsible for intracellular protein transport between the endoplasmic reticulum and the Golgi apparatus. The importance of such intracellular transport mechanisms is underscored by the various disorders, including skeletal disorders such as cranio-lenticulo-sutural dysplasia and osteogenesis imperfect, caused by mutations in the COPII coatomer complex. In this article, we report a clinically recognizable craniofacial disorder characterized by facial dysmorphisms, severe micrognathia, rhizomelic shortening, microcephalic dwarfism, and mild developmental delay due to loss-of-function heterozygous mutations in ARCN1, which encodes the coatomer subunit delta of COPI. ARCN1 mutant cell lines were revealed to have endoplasmic reticulum stress, suggesting the involvement of ER stress response in the pathogenesis of this disorder. Given that ARCN1 deficiency causes defective type I collagen transport, reduction of collagen secretion represents the likely mechanism underlying the skeletal phenotype that characterizes this condition. Our findings demonstrate the importance of COPI-mediated transport in human development, including skeletogenesis and brain growth.


Asunto(s)
Proteína Coat de Complejo I/metabolismo , Proteína Coatómero/genética , Anomalías Craneofaciales/genética , Mutación , Adulto , Proteína Coatómero/metabolismo , Colágeno/metabolismo , Estrés del Retículo Endoplásmico , Heterocigoto , Humanos , Lactante , Recién Nacido , Masculino , Síndrome
12.
Proc Natl Acad Sci U S A ; 113(45): 12739-12744, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27791078

RESUMEN

Wnt/ß-catenin signaling plays a key role in the tumorigenicity of colon cancer. Furthermore, it has been reported that lncRNAs are dysregulated in several steps of cancer development. Here we show that ß-catenin directly activates the transcription of the long noncoding RNA (lncRNA) ASBEL [antisense ncRNA in the ANA (Abundant in neuroepithelium area)/BTG3 (B-cell translocation gene 3) locus] and transcription factor 3 (TCF3), both of which are required for the survival and tumorigenicity of colorectal cancer cells. ASBEL interacts with and recruits TCF3 to the activating transcription factor 3 (ATF3) locus, where it represses the expression of ATF3. Furthermore, we demonstrate that ASBEL-TCF3-mediated down-regulation of ATF3 expression is required for the proliferation and tumorigenicity of colon tumor cells. ATF3, in turn, represses the expression of ASBEL Our results reveal a pathway involving an lncRNA and two transcription factors that plays a key role in Wnt/ß-catenin-mediated tumorigenesis. These results may provide insights into the variety of biological and pathological processes regulated by Wnt/ß-catenin signaling.

13.
Nature ; 489(7415): 313-7, 2012 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-22885700

RESUMEN

Cornelia de Lange syndrome (CdLS) is a dominantly inherited congenital malformation disorder, caused by mutations in the cohesin-loading protein NIPBL for nearly 60% of individuals with classical CdLS, and by mutations in the core cohesin components SMC1A (~5%) and SMC3 (<1%) for a smaller fraction of probands. In humans, the multisubunit complex cohesin is made up of SMC1, SMC3, RAD21 and a STAG protein. These form a ring structure that is proposed to encircle sister chromatids to mediate sister chromatid cohesion and also has key roles in gene regulation. SMC3 is acetylated during S-phase to establish cohesiveness of chromatin-loaded cohesin, and in yeast, the class I histone deacetylase Hos1 deacetylates SMC3 during anaphase. Here we identify HDAC8 as the vertebrate SMC3 deacetylase, as well as loss-of-function HDAC8 mutations in six CdLS probands. Loss of HDAC8 activity results in increased SMC3 acetylation and inefficient dissolution of the 'used' cohesin complex released from chromatin in both prophase and anaphase. SMC3 with retained acetylation is loaded onto chromatin, and chromatin immunoprecipitation sequencing analysis demonstrates decreased occupancy of cohesin localization sites that results in a consistent pattern of altered transcription seen in CdLS cell lines with either NIPBL or HDAC8 mutations.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Síndrome de Cornelia de Lange/genética , Síndrome de Cornelia de Lange/metabolismo , Histona Desacetilasas/genética , Mutación/genética , Proteínas Represoras/genética , Acetilación , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Anafase , Sitios de Unión , Proteínas de Ciclo Celular/química , Proteoglicanos Tipo Condroitín Sulfato/química , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Cromatina/genética , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Proteínas Cromosómicas no Histona/química , Cristalografía por Rayos X , Proteínas de Unión al ADN , Femenino , Fibroblastos , Células HeLa , Histona Desacetilasas/química , Histona Desacetilasas/deficiencia , Histona Desacetilasas/metabolismo , Humanos , Masculino , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Profase , Conformación Proteica , Proteínas/genética , Proteínas Represoras/química , Proteínas Represoras/deficiencia , Proteínas Represoras/metabolismo , Transcripción Genética , Cohesinas
14.
Mol Cell ; 39(4): 595-605, 2010 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-20797631

RESUMEN

Chromosome replication initiates at multiple replicons and terminates when forks converge. In E. coli, the Tus-TER complex mediates polar fork converging at the terminator region, and aberrant termination events challenge chromosome integrity and segregation. Since in eukaryotes, termination is less characterized, we used budding yeast to identify the factors assisting fork fusion at replicating chromosomes. Using genomic and mechanistic studies, we have identified and characterized 71 chromosomal termination regions (TERs). TERs contain fork pausing elements that influence fork progression and merging. The Rrm3 DNA helicase assists fork progression across TERs, counteracting the accumulation of X-shaped structures. The Top2 DNA topoisomerase associates at TERs in S phase, and G2/M facilitates fork fusion and prevents DNA breaks and genome rearrangements at TERs. We propose that in eukaryotes, replication fork barriers, Rrm3, and Top2 coordinate replication fork progression and fusion at TERs, thus counteracting abnormal genomic transitions.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Cromosomas Fúngicos , Replicación del ADN , ADN-Topoisomerasas de Tipo II/metabolismo , ADN de Hongos/biosíntesis , Proteínas de Unión al ADN/metabolismo , Sitios Genéticos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Regiones Terminadoras Genéticas , Antígenos de Neoplasias/genética , División Celular , Fragilidad Cromosómica , Roturas del ADN , ADN Helicasas/metabolismo , ADN-Topoisomerasas de Tipo II/genética , ADN de Hongos/química , Proteínas de Unión al ADN/genética , Fase G2 , Reordenamiento Génico , Mutación , Conformación de Ácido Nucleico , Fase S , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
15.
Development ; 141(14): 2885-94, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25005477

RESUMEN

Apoptosis is an important mechanism for sculpting morphology. However, the molecular cascades that control apoptosis in developing limb buds remain largely unclear. Here, we show that MafB was specifically expressed in apoptotic regions of chick limb buds, and MafB/cFos heterodimers repressed apoptosis, whereas MafB/cJun heterodimers promoted apoptosis for sculpting the shape of the limbs. Chromatin immunoprecipitation sequencing in chick limb buds identified potential target genes and regulatory elements controlled by Maf and Jun. Functional analyses revealed that expression of p63 and p73, key components known to arrest the cell cycle, was directly activated by MafB and cJun. Our data suggest that dimeric combinations of MafB, cFos and cJun in developing chick limb buds control the number of apoptotic cells, and that MafB/cJun heterodimers lead to apoptosis via activation of p63 and p73.


Asunto(s)
Apoptosis , Extremidades/embriología , Factor de Transcripción MafB/metabolismo , Morfogénesis , Multimerización de Proteína , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Animales , Sitios de Unión , Proteínas Morfogenéticas Óseas/metabolismo , Supervivencia Celular , Embrión de Pollo , Pollos , Regulación hacia Abajo/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Esbozos de los Miembros/citología , Esbozos de los Miembros/embriología , Esbozos de los Miembros/metabolismo , Macrófagos/metabolismo , Factor de Transcripción MafB/genética , Modelos Biológicos , Morfogénesis/genética , Unión Proteica , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-jun/genética , Transducción de Señal/genética , Factor de Transcripción AP-1/metabolismo , Tretinoina/metabolismo
16.
Nature ; 471(7338): 392-6, 2011 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-21368764

RESUMEN

During chromosome duplication the parental DNA molecule becomes overwound, or positively supercoiled, in the region ahead of the advancing replication fork. To allow fork progression, this superhelical tension has to be removed by topoisomerases, which operate by introducing transient DNA breaks. Positive supercoiling can also be diminished if the advancing fork rotates along the DNA helix, but then sister chromatid intertwinings form in its wake. Despite these insights it remains largely unknown how replication-induced superhelical stress is dealt with on linear, eukaryotic chromosomes. Here we show that this stress increases with the length of Saccharomyces cerevisiae chromosomes. This highlights the possibility that superhelical tension is handled on a chromosome scale and not only within topologically closed chromosomal domains as the current view predicts. We found that inhibition of type I topoisomerases leads to a late replication delay of longer, but not shorter, chromosomes. This phenotype is also displayed by cells expressing mutated versions of the cohesin- and condensin-related Smc5/6 complex. The frequency of chromosomal association sites of the Smc5/6 complex increases in response to chromosome lengthening, chromosome circularization, or inactivation of topoisomerase 2, all having the potential to increase the number of sister chromatid intertwinings. Furthermore, non-functional Smc6 reduces the accumulation of intertwined sister plasmids after one round of replication in the absence of topoisomerase 2 function. Our results demonstrate that the length of a chromosome influences the need of superhelical tension release in Saccharomyces cerevisiae, and allow us to propose a model where the Smc5/6 complex facilitates fork rotation by sequestering nascent chromatid intertwinings that form behind the replication machinery.


Asunto(s)
Cromosomas Fúngicos/metabolismo , Replicación del ADN/fisiología , ADN Superhelicoidal/metabolismo , Saccharomyces cerevisiae , Proteínas de Ciclo Celular/metabolismo , Cromátides/química , Cromátides/genética , Cromátides/metabolismo , Cromosomas Fúngicos/química , Cromosomas Fúngicos/genética , ADN-Topoisomerasas/genética , ADN-Topoisomerasas/metabolismo , ADN Encadenado/química , ADN Encadenado/genética , ADN Encadenado/metabolismo , ADN Superhelicoidal/biosíntesis , ADN Superhelicoidal/química , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Conformación de Ácido Nucleico , Plásmidos/química , Plásmidos/genética , Plásmidos/metabolismo , Rotación , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa II/farmacología
17.
PLoS Genet ; 10(10): e1004680, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25329383

RESUMEN

The cohesin complex, which is essential for sister chromatid cohesion and chromosome segregation, also inhibits resolution of sister chromatid intertwinings (SCIs) by the topoisomerase Top2. The cohesin-related Smc5/6 complex (Smc5/6) instead accumulates on chromosomes after Top2 inactivation, known to lead to a buildup of unresolved SCIs. This suggests that cohesin can influence the chromosomal association of Smc5/6 via its role in SCI protection. Using high-resolution ChIP-sequencing, we show that the localization of budding yeast Smc5/6 to duplicated chromosomes indeed depends on sister chromatid cohesion in wild-type and top2-4 cells. Smc5/6 is found to be enriched at cohesin binding sites in the centromere-proximal regions in both cell types, but also along chromosome arms when replication has occurred under Top2-inhibiting conditions. Reactivation of Top2 after replication causes Smc5/6 to dissociate from chromosome arms, supporting the assumption that Smc5/6 associates with a Top2 substrate. It is also demonstrated that the amount of Smc5/6 on chromosomes positively correlates with the level of missegregation in top2-4, and that Smc5/6 promotes segregation of short chromosomes in the mutant. Altogether, this shows that the chromosomal localization of Smc5/6 predicts the presence of the chromatid segregation-inhibiting entities which accumulate in top2-4 mutated cells. These are most likely SCIs, and our results thus indicate that, at least when Top2 is inhibited, Smc5/6 facilitates their resolution.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromosomas Fúngicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Sitios de Unión , Proteínas de Ciclo Celular/genética , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Roturas del ADN , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Recombinación Genética , Fase S/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Temperatura , Cohesinas
18.
EMBO J ; 31(4): 895-907, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22234187

RESUMEN

The integrity of the genome depends on diverse pathways that regulate DNA metabolism. Defects in these pathways result in genome instability, a hallmark of cancer. Deletion of ELG1 in budding yeast, when combined with hypomorphic alleles of PCNA results in spontaneous DNA damage during S phase that elicits upregulation of ribonucleotide reductase (RNR) activity. Increased RNR activity leads to a dramatic expansion of deoxyribonucleotide (dNTP) pools in G1 that allows cells to synthesize significant fractions of the genome in the presence of hydroxyurea in the subsequent S phase. Consistent with the recognized correlation between dNTP levels and spontaneous mutation, compromising ELG1 and PCNA results in a significant increase in mutation rates. Deletion of distinct genome stability genes RAD54, RAD55, and TSA1 also results in increased dNTP levels and mutagenesis, suggesting that this is a general phenomenon. Together, our data point to a vicious circle in which mutations in gatekeeper genes give rise to genomic instability during S phase, inducing expansion of the dNTP pool, which in turn results in high levels of spontaneous mutagenesis.


Asunto(s)
Replicación del ADN , Desoxirribonucleósidos/metabolismo , Mutagénesis , Saccharomyces cerevisiae/metabolismo , Daño del ADN , Replicación del ADN/efectos de los fármacos , Hidroxiurea/farmacología , Fenotipo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Mol Cell ; 32(1): 106-17, 2008 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-18851837

RESUMEN

Yeast Mrc1, ortholog of metazoan Claspin, is both a central component of normal DNA replication forks and a mediator of the S phase checkpoint. We report that Mrc1 interacts with Pol2, the catalytic subunit of DNA polymerase epsilon, essential for leading-strand DNA replication and for the checkpoint. In unperturbed cells, Mrc1 interacts independently with both the N-terminal and C-terminal halves of Pol2 (Pol2N and Pol2C). Strikingly, phosphorylation of Mrc1 during the S phase checkpoint abolishes Pol2N binding, but not Pol2C interaction. Mrc1 is required to stabilize Pol2 at replication forks stalled in HU. The bimodal Mrc1/Pol2 interaction may be an additional step in regulating the S phase checkpoint response to DNA damage on the leading strand. We propose that Mrc1, which also interacts with the MCMs, may modulate coupling of polymerization and unwinding at the replication fork.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , ADN Polimerasa II/metabolismo , Replicación del ADN , Fase S/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona , ADN Helicasas/química , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Polimerasa II/química , ADN Polimerasa II/genética , ADN de Hongos/biosíntesis , ADN de Hongos/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Modelos Moleculares , Complejos Multiproteicos , Mutación , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA