Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 20(10)2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31121829

RESUMEN

Inhibiting the tyrosine kinase activity of epidermal growth factor receptor (EGFR) using small molecule tyrosine kinase inhibitors (TKIs) is often ineffective in treating cancers harboring wild-type EGFR (wt-EGFR). TKIs are known to cause dimerization of EGFR without altering its expression level. Given the fact that EGFR possesses kinase-independent pro-survival function, the role of TKI-inactivated EGFR in cancer cell survival needs to be addressed. In this study, using wt-EGFR-expressing cancer cells A549 (lung), DU145 (prostate), PC3 (prostate), and MDA-MB-231 (breast), we characterized the TKI-induced dimerization status of EGFR and determined the dependency of cells on kinase-inactivated EGFR for survival. We report that TKI-induced EGFR dimerization is dependent on palmitoylation and independent of its kinase activity, and that mutations of the cysteine residues known to be critical for EGFR's palmitoylation abolished TKI-induced EGFR dimerization. Furthermore, TKI-induced EGFR dimerization is persistent in TKI-resistant cells, and inhibition of palmitoylation by 2-bromopalmitate, or targeted reduction of the kinase-inactivated EGFR by siRNA or by an EGFR-downregulating peptide, are lethal to TKI-resistant cancer cells. This study suggests that kinase-inactivated EGFR remains to be a viable therapeutic target for wt-EGFR cancers and that inhibiting palmitoylation or downregulating EGFR may overcome TKI resistance.


Asunto(s)
Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Receptores ErbB/química , Receptores ErbB/metabolismo , Humanos , Neoplasias/metabolismo , Multimerización de Proteína/efectos de los fármacos
2.
Mol Biotechnol ; 63(3): 200-220, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33423211

RESUMEN

The mce1 operon of Mycobacterium tuberculosis, important for lipid metabolism/transport, host cell invasion, modulation of host immune response and pathogenicity, is under the transcriptional control of Mce1R. Hence characterizing Mce1R is an important step for novel anti-tuberculosis drug discovery. The present study reports functional and in silico characterization of Mce1R. In this work, we have computationally modeled the structure of Mce1R and have validated the structure by computational and experimental methods. Mce1R has been shown to harbor the canonical VanR-like structure with a flexible N-terminal 'arm', carrying conserved positively charged residues, most likely involved in the operator DNA binding. The mce1R gene has been cloned, expressed, purified and its DNA-binding activity has been measured in vitro. The Kd value for Mce1R-operator DNA interaction has been determined to be 0.35 ± 0.02 µM which implies that Mce1R binds to DNA with moderate affinity compared to the other FCD family of regulators. So far, this is the first report for measuring the DNA-binding affinity of any VanR-type protein. Despite significant sequence similarity at the N-terminal domain, the wHTH motif of Mce1R exhibits poor conservancy of amino acid residues, critical for DNA-binding, thus results in moderate DNA-binding affinity. The N-terminal DNA-binding domain is structurally dynamic while the C-terminal domain showed significant stability and such profile of structural dynamics is most likely to be preserved in the structural orthologs of Mce1R. In addition to this, a cavity has been detected in the C-terminal domain of Mce1R which contains a few conserved residues. Comparison with other FCD family of regulators suggests that most of the conserved residues might be critical for binding to specific ligand. The max pKd value and drug score for the cavity are estimated to be 9.04 and 109 respectively suggesting that the cavity represents a suitable target site for novel anti-tuberculosis drug discovery approaches.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Clonación Molecular/métodos , Mycobacterium tuberculosis/genética , Secuencias de Aminoácidos , Proteínas Bacterianas/genética , ADN Bacteriano/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Operón , Unión Proteica , Conformación Proteica , Dominios Proteicos , Homología de Secuencia de Aminoácido
3.
Oncogenesis ; 7(1): 5, 2018 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-29358623

RESUMEN

The oncogenic epidermal growth factor receptor (EGFR) is commonly overexpressed in solid cancers. The tyrosine kinase activity of EGFR has been a major therapeutic target for cancer; however, the efficacy of EGFR tyrosine kinase inhibitors to treat cancers has been challenged by innate and acquired resistance at the clinic. Accumulating evidence suggests that EGFR possesses kinase-independent pro-survival functions, and that cancer cells are more vulnerable to reduction of EGFR protein than to inhibition of its kinase activity. The molecular mechanism underlying loss-of-EGFR-induced cell death remains largely unknown. In this study, we show that, unlike inhibiting EGFR kinase activity that is known to induce pro-survival non-selective autophagy, downregulating EGFR protein, either by siRNA, or by a synthetic EGFR-downregulating peptide (Herdegradin), kills prostate and ovarian cancer cells via selective mitophagy by activating the mTORC2/Akt axis. Furthermore, Herdegradin induced mitophagy and inhibited the growth of orthotopic ovarian cancers in mice. This study identifies anti-mitophagy as a kinase-independent function of EGFR, reveals a novel function of mTORC2/Akt axis in promoting mitophagy in cancer cells, and offers a novel approach for pharmacological downregulation of EGFR protein as a potential treatment for EGFR-positive cancers.

4.
Endocr Relat Cancer ; 25(4): 453-469, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29431615

RESUMEN

Despite altered metabolism being an accepted hallmark of cancer, it is still not completely understood which signaling pathways regulate these processes. Given the central role of androgen receptor (AR) signaling in prostate cancer, we hypothesized that AR could promote prostate cancer cell growth in part through increasing glucose uptake via the expression of distinct glucose transporters. Here, we determined that AR directly increased the expression of SLC2A12, the gene that encodes the glucose transporter GLUT12. In support of these findings, gene signatures of AR activity correlated with SLC2A12 expression in multiple clinical cohorts. Functionally, GLUT12 was required for maximal androgen-mediated glucose uptake and cell growth in LNCaP and VCaP cells. Knockdown of GLUT12 also decreased the growth of C4-2, 22Rv1 and AR-negative PC-3 cells. This latter observation corresponded with a significant reduction in glucose uptake, indicating that additional signaling mechanisms could augment GLUT12 function in an AR-independent manner. Interestingly, GLUT12 trafficking to the plasma membrane was modulated by calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2)-5'-AMP-activated protein kinase (AMPK) signaling, a pathway we previously demonstrated to be a downstream effector of AR. Inhibition of CaMKK2-AMPK signaling decreased GLUT12 translocation to the plasma membrane by inhibiting the phosphorylation of TBC1D4, a known regulator of glucose transport. Further, AR increased TBC1D4 expression. Correspondingly, expression of TBC1D4 correlated with AR activity in prostate cancer patient samples. Taken together, these data demonstrate that prostate cancer cells can increase the functional levels of GLUT12 through multiple mechanisms to promote glucose uptake and subsequent cell growth.


Asunto(s)
Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Próstata/metabolismo , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Transducción de Señal/fisiología , Andrógenos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Humanos , Masculino , Metribolona/farmacología , Fosforilación/efectos de los fármacos , Próstata/efectos de los fármacos , Próstata/patología , Neoplasias de la Próstata/patología , ARN Interferente Pequeño , Transducción de Señal/efectos de los fármacos
5.
Cell Cycle ; 13(15): 2415-30, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25483192

RESUMEN

Increased expressions of fatty acid synthase (FASN) and epidermal growth factor receptor (EGFR) are common in cancer cells. De novo synthesis of palmitate by FASN is critical for the survival of cancer cells via mechanisms independent of its role as an energy substrate. Besides the plasma membrane and the nucleus, EGFR can also localize at the mitochondria; however, signals that can activate mitochondrial EGFR (mtEGFR) and the functions of mtEGFR of cancer cells remain unknown. The present study characterizes mtEGFR in the mitochondria of cancer cells (prostate and breast) and reveals that mtEGFR can promote mitochondrial fusion through increasing the protein levels of fusion proteins PHB2 and OPA1. Activation of plasma membranous EGFR (pmEGFR) stimulates the de novo synthesis of palmitate through activation of FASN and ATP-citrate lyase (ACLy). In vitro kinase assay with isolated mitochondria shows that palmitate can activate mtEGFR. Inhibition of FASN blocks the mtEGFR phosphorylation and palmitoylation induced by EGF. Mutational studies show that the cysteine 797 is important for mtEGFR activation and palmitoylation. Inhibition of FASN can block EGF induced mitochondrial fusion and increased the sensitivity of prostate cancer cells to EGFR tyrosine kinase inhibitor. In conclusion, these results suggest that mtEGFR can be activated by pmEGFR through de novo synthesized palmitate to promote mitochondrial fusion and survival of cancer cells. This mechanism may serve as a novel target to improve EGFR-based cancer therapy.


Asunto(s)
Neoplasias de la Mama/patología , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Mitocondrias/patología , Dinámicas Mitocondriales/efectos de los fármacos , Palmitatos/metabolismo , Neoplasias de la Próstata/patología , Línea Celular Tumoral , Cisteína/metabolismo , Resistencia a Medicamentos/efectos de los fármacos , Acido Graso Sintasa Tipo I/metabolismo , Femenino , Humanos , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Prohibitinas , Análisis por Matrices de Proteínas/métodos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA