RESUMEN
BACKGROUND & AIMS: Although perceived stress (PS) has been associated with symptomatic flares in inflammatory bowel disease, clinical and physiological measures associated with perceived stress and flare are not known. The aim of this study was to identify physiological factors associated with perceived stress in ulcerative colitis (UC) subjects, and their relationship with flare. METHODS: Patients with UC in clinical remission (Simple Colitis Clinical Activity Index [SCCAI] score <5) underwent clinical and behavioral assessments, morning salivary cortisol measurements, autonomic nervous system activity testing (heart rate variability, electrodermal activity) at baseline with patient-reported SCCAI every 2 weeks over 1 to 2 years and fecal calprotectin at time of flare. Clinical flares (SCCAI ≥5) and biochemical flares (SCCAI ≥5 with fecal calprotectin ≥250 µg/g) were evaluated. RESULTS: One hundred ten patients with UC were enrolled, with mean follow-up of 65.6 weeks. Patients with UC with higher and lower PS were determined. Although the high PS group had 3.6 times higher odds of a clinical flare than the low PS group, no significant differences in biochemical flares were observed between the low and high PS groups. The high vs low PS group differed in tonic sympathetic arousal as indexed by significantly greater baseline electrodermal activity (4.3 vs 3.4 microsiemens; P = .026) in the high PS group, but not in terms of heart rate variability and morning cortisol levels. Increased fecal calprotectin was associated with cardioautonomic measures, suggesting lower parasympathetic activity. CONCLUSIONS: Increased PS assessed at baseline is associated with tonic sympathetic arousal and greater odds of clinical flares in patients with UC.
Asunto(s)
Colitis Ulcerosa , Estrés Psicológico , Brote de los Síntomas , Humanos , Colitis Ulcerosa/fisiopatología , Colitis Ulcerosa/psicología , Heces/química , Hidrocortisona , Enfermedades Inflamatorias del Intestino/fisiopatología , Enfermedades Inflamatorias del Intestino/psicología , Complejo de Antígeno L1 de Leucocito , Estrés Psicológico/fisiopatologíaRESUMEN
Pancreatic ductal adenocarcinoma (PDAC)'s growing incidence has been linked to the rise in obesity and type 2 diabetes mellitus. In previous work, we have shown that metformin can prevent the increased incidence of PDAC in a KrasG12D mouse model subjected to a diet high in fat and calories (HFCD). One potential way that metformin can affect the host is through alterations in the gut microbiome. Therefore, we investigated microbial associations with PDAC development and metformin use in the same mouse model. Lox-Stop-Lox Kras G12D/+ (LSL-Kras G12D/+); p48-Cre (KC) mice were given control diet, HFCD, or HFCD with 5 mg/mL metformin in drinking water for 3 mo. At the end of the 3 mo, 16S rRNA sequencing was performed to characterize microbiome composition of duodenal mucosal, duodenal luminal, and cecal luminal samples. KC mice on an HFCD demonstrated depletion of intact acini and formation of advanced pancreatic intraepithelial neoplasia. This effect was completely abrogated by metformin treatment. HFCD was associated with significant changes in microbial composition and diversity in the duodenal mucosa and lumen, much of which was prevented by metformin. In particular, Clostridium sensu stricto was negatively correlated with percent intact acini and seemed to be inhibited by the addition of metformin while on an HFCD. Administration of metformin eliminated PDAC formation in KC mice. This change was associated with significant microbial changes in both the mucosal and luminal microbiome of the duodenum. This suggests that the microbiome may be a potential mediator of the chemopreventive effects of metformin.NEW & NOTEWORTHY Pancreatic ductal adenocarcinoma (PDAC)'s growing incidence has been linked to the rise in obesity and type 2 diabetes mellitus. Administration of metformin eliminated PDAC formation in KC mice with diet-induced obesity. This change was associated with significant microbial changes in both the mucosal and luminal microbiome of the duodenum. This suggests that the microbiome may be a potential mediator of the chemopreventive effects of metformin.
Asunto(s)
Carcinoma Ductal Pancreático , Duodeno , Microbioma Gastrointestinal/efectos de los fármacos , Metformina/farmacología , Animales , Carcinoma Ductal Pancreático/microbiología , Carcinoma Ductal Pancreático/prevención & control , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Duodeno/microbiología , Duodeno/patología , Hipoglucemiantes/farmacología , Ratones , Obesidad/etiología , Resultado del TratamientoRESUMEN
BACKGROUND: Stress reactivity (SR) is associated with increased risk of flares in ulcerative colitis (UC) patients. Because both preclinical and clinical data support that stress can influence gut microbiome composition and function, we investigated whether microbiome profiles of SR exist in UC. METHODS: Ninety-one UC subjects in clinical and biochemical remission were classified into high and low SR groups by questionnaires. Baseline and longitudinal characterization of the intestinal microbiome was performed by 16S rRNA gene sequencing and fecal and plasma global untargeted metabolomics. Microbe, fecal metabolite, and plasma metabolite abundances were analyzed separately to create random forest classifiers for high SR and biomarker-derived SR scores. RESULTS: High SR reactivity was characterized by altered abundance of fecal microbes, primarily in the Ruminococcaceae and Lachnospiraceae families; fecal metabolites including reduced levels of monoacylglycerols (endocannabinoid-related) and bile acids; and plasma metabolites including increased 4-ethyl phenyl sulfate, 1-arachidonoylglycerol (endocannabinoid), and sphingomyelin. Classifiers generated from baseline microbe, fecal metabolite, and plasma metabolite abundance distinguished high vs low SR with area under the receiver operating characteristic curve of 0.81, 0.83, and 0.91, respectively. Stress reactivity scores derived from these classifiers were significantly associated with flare risk during 6 to 24 months of follow-up, with odds ratios of 3.8, 4.1, and 4.9. Clinical flare and intestinal inflammation did not alter fecal microbial abundances but attenuated fecal and plasma metabolite differences between high and low SR. CONCLUSIONS: High SR in UC is characterized by microbial signatures that predict clinical flare risk, suggesting that the microbiome may contribute to stress-induced UC flares.
Asunto(s)
Colitis Ulcerosa , Humanos , Endocannabinoides , ARN Ribosómico 16S , Ácidos y Sales Biliares , ClostridialesRESUMEN
Childhood overweight/obesity is associated with stress-related psychopathology, yet the pathways connecting childhood obesity to stress susceptibility are poorly understood. We employed a systems biology approach with 62 adolescent Lewis rats fed a Western-like high-saturated fat diet (WD, 41% kcal from fat) or a control diet (CD, 13% kcal from fat). A subset of rats underwent a 31-day model of predator exposures and social instability (PSS). Effects were assessed using behavioral tests, DTI (diffusion tensor imaging), NODDI (neurite orientation dispersion and density imaging), 16S rRNA gene sequencing for gut microbiome profiling, hippocampal microglia analysis, and targeted gene methylation. Parallel experiments on human microglia cells (HMC3) examined how palmitic acid influences cortisol-related inflammatory responses. Rats exposed to WD and PSS exhibited deficits in sociability, increased fear/anxiety-like behaviors, food consumption, and body weight. WD/PSS altered hippocampal microstructure (subiculum, CA1, dentate gyrus), and microbiome analysis showed a reduced abundance of members of the phylum Firmicutes. WD/PSS synergistically promoted neuroinflammatory changes in hippocampal microglia, linked with microbiome shifts and altered Fkbp5 expression/methylation. In HMC3, palmitate disrupted cortisol responses, affecting morphology, phagocytic markers, and cytokine release, partially mediated by FKBP5. This study identifies gene-environment interactions that influence microglia biology and may contribute to the connection between childhood obesity and stress-related psychopathology later in life.
RESUMEN
Introduction: Metabolic dysfunction-associated steatotic liver disease (MASLD) affects nearly 25% of the population and is the leading cause for liver-related mortality. Bariatric surgery is a well-known treatment for MASLD and obesity. Understanding the fundamental mechanisms by which bariatric surgery can alter MASLD can lead to new avenues of therapy and research. Previous studies have identified the microbiome's role in bariatric surgery and in inflammatory immune cell populations. The host innate immune system modulates hepatic inflammation and fibrosis, and thus the progression of MASLD. The precise role of immune cell types in the pathogenesis of MASLD remains an active area of investigation. The aim of this study was to understand the interplay between microbiota composition post-bariatric surgery and the immune system in MASLD. Methods: Eighteen morbidly obese females undergoing sleeve gastrectomy were followed pre-and post-surgery. Stool from four patients, showing resolved MASLD post-surgery with sustained weight loss, was transplanted into antibiotic treated mice. Mice received pre-or post-surgery stool and were fed a standard or high-fat diet. Bodyweight, food intake, and physiological parameters were tracked weekly. Metabolic parameters were measured post-study termination. Results: The human study revealed that bariatric surgery led to significant weight loss (p > 0.05), decreased inflammatory markers, and improved glucose levels six months post-surgery. Patients with weight loss of 20% or more showed distinct changes in blood metabolites and gut microbiome composition, notably an increase in Bacteroides. The mouse model confirmed surgery-induced microbiome changes to be a major factor in the reduction of markers and attenuation of MASLD progression. Mice receiving post-surgery fecal transplants had significantly less weight gain and liver steatosis compared to pre-surgery recipients. There was also a significant decrease in inflammatory cytokines interferon gamma, interleukin 2, interleukin 15, and mig. This was accompanied by alterations in liver immunophenotype, including an increase in natural killer T cells and reduction of Kupfer cells in the post-surgery transplant group. Discussion: Our findings suggest surgery induced microbial changes significantly reduce inflammatory markers and fatty liver progression. The results indicate a potential causal link between the microbiome and the host immune system, possibly mediated through modulation of liver NKT and Kupffer cells.
RESUMEN
Bariatric surgery remains a potent therapy for nonalcoholic fatty liver disease (NAFLD), but its inherent risk and eligibility requirement limit its adoption. Therefore, understanding how bariatric surgery improves NAFLD is paramount to developing novel therapeutics. Here, we show that the microbiome changes induced by sleeve gastrectomy (SG) reduce glucose-dependent insulinotropic polypeptide (GIP) signaling and confer resistance against diet-induced obesity (DIO) and NAFLD. We examined a cohort of NALFD patients undergoing SG and evaluated their microbiome, serum metabolites, and GI hormones. We observed significant changes in Bacteroides, lipid-related metabolites, and reduction in GIP. To examine if the changes in the microbiome were causally related to NAFLD, we performed fecal microbial transplants in antibiotic-treated mice from patients before and after their surgery who had significant weight loss and improvement of their NAFLD. Mice transplanted with the microbiome of patients after bariatric surgery were more resistant to DIO and NAFLD development compared to mice transplanted with the microbiome of patients before surgery. This resistance to DIO and NAFLD was also associated with a reduction in GIP levels in mice with post-bariatric microbiome. We further show that the reduction in GIP was related to higher levels of Akkermansia and differing levels of indolepropionate, bacteria-derived tryptophan-related metabolite. Overall, this is one of the few studies showing that GIP signaling is altered by the gut microbiome, and it supports that the positive effect of bariatric surgery on NAFLD is in part due to microbiome changes.
Asunto(s)
Cirugía Bariátrica , Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Obesidad Mórbida , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Obesidad Mórbida/cirugía , Obesidad/cirugía , Obesidad/complicaciones , Receptores Acoplados a Proteínas G , Péptidos , GlucosaRESUMEN
OBJECTIVE: The study objective was to compare the microbial composition of patients with dermatomyositis (DM) and healthy controls (HCs) and determine whether microbial alterations are associated with clinical manifestations of DM. METHODS: The 16S ribosomal RNA gene sequencing was performed on fecal samples from patients with DM and HCs. Microbial composition and diversity were compared between subjects with DM and HCs and in association with several DM-specific clinical variables, including myositis-specific autoantibodies (MSAs). Differentially abundant microbial taxa and genes associated with clinical characteristics were identified, and functional analysis was performed using predicted metagenomics. Dietary intake was assessed using a 24-hour dietary recall. RESULTS: The fecal microbiome of 36 patients with DM and 26 HCs were analyzed. Patients with DM trended toward lower microbial diversity compared with HCs. The higher physician global damage score was significantly correlated with the lower microbial diversity in patients with DM. Patients with interstitial lung disease (ILD)-associated MSA (antisynthetase antibody (ab), anti-melanoma differentiation-associated protein 5 ab, n = 12) had significant differences in microbial composition and lower microbial diversity compared with HCs. Differential abundance testing demonstrated a unique taxonomic signature in the ILD-MSA subgroup, and predictive metagenomics identified functional alterations in a number of metabolic pathways. A significant increase in the relative abundance of Proteobacteria was positively correlated with multiple pathways involved in lipopolysaccharide synthesis and transport in the ILD-MSA group. CONCLUSION: Patients with DM, particularly with ILD-associated MSAs, have lower microbial diversity and a distinct taxonomic composition compared with HCs. Further studies are needed to validate our findings and elucidate specific pathogenetic mechanisms that link the gut microbiome to clinical and pathological features of DM.
RESUMEN
Background: Studies of the ocular microbiome have used a variety of sampling techniques, but no study has directly compared different sampling methods applied to the same eyes to one another or to a reference standard of corneal epithelial biopsy. We addressed this lack by comparing the microbiome from three conjunctival swabs with those of corneal epithelial biopsy. Methods: Twelve eyes (11 patients) were swabbed by calcium alginate swab, cotton-tipped applicator, and Weck-Cel cellulose sponge before a corneal epithelial biopsy (48 samples). We then performed 16S rRNA gene sequencing and universal 16S rRNA gene real-time polymerase chain reaction. Negative/blank controls were used to eliminate contaminants. An analysis was performed to examine the concordance of the three swab types to corneal epithelial biopsy. The effect of patient age on the ocular microbiome as determined by epithelial biopsy was also examined. Results: The ocular microbiome from corneal epithelial biopsies consisted of 31 genera with a relative abundance of 1% or more, including Weisella, Corynebacterium, and Pseudomonas. Of the three swab types, Weck-Cel differed the most from corneal biopsies based on beta-diversity analysis. Cotton swabs were unable to capture the Bacteroides population seen on epithelial biopsy. Therefore, calcium alginate swabs seemed to be the closest to epithelial biopsies. Older patients (≥65 years old) had higher alpha diversity (P < 0.05) than younger patients. Differential abundance testing showed that there were 18 genera that were differentially abundant between the two age groups, including Streptococcus and eight members of the Proteobacteria phylum. Conclusions: We demonstrate that ocular sampling method and patient age can greatly affect the outcome of sequencing-based analysis of the ocular microbiome. Translational Relevance: By understanding the impact of different sampling methods on the results obtained from the ocular surface microbiome, future research on the topic will be more reproducible, leading to a better understanding of ocular surface microbiome in health and disease.
Asunto(s)
Bacterias , Microbiota , Anciano , Bacterias/genética , Córnea , Humanos , Microbiota/genética , ARN Ribosómico 16S/genética , Manejo de EspecímenesRESUMEN
Aim: The microbiome has been shown to be pivotal in the development of metabolic associated fatty liver disease (MAFLD). Few have examined the relationship of the microbiome specifically with steatosis grade. Therefore, our aim was to characterize the association of the microbiome with MAFLD steatosis severity while adjusting for metabolic comorbidities including diabetes. Methods: We enrolled patients with MAFLD at the West Los Angeles Veterans Affair Hospital. All patients underwent ultrasound elastography, fasting serum collection, and fecal sampling for 16S sequencing. We examined the associations of microbial diversity and composition with advanced steatosis, defined as a CAP score of ≥ 300 dB/m, with or without the presence of metabolic comorbidities. Results: Seventy-five patients were enrolled. African American were less likely to have advanced steatosis than either Hispanics or Whites (P = 0.001). Patients with more advanced steatosis had higher fasting serum triglyceride (192.6 ± 157.1 mg/dL vs. 122.5 ± 57.4 mg/dL), HbA1c (6.7% ± 1.4% vs. 6.1% ± 0.8%), transaminases, and were more likely to have metabolic syndrome (52.4% vs. 24.2%, P = 0.02). Advanced steatosis and diabetes were associated with altered microbial composition. Bacteroides was negatively associated with advanced steatosis while Megasphaera was positively associated with steatosis. Akkermansia was negatively associated with diabetes, while Anaerostipes and Parabacteroides were positively associated with diabetes. Conclusion: Diabetes and metabolic syndrome are associated with hepatic steatosis severity in MAFLD patients and both advanced steatosis and comorbid diabetes are independently associated with microbiome changes. These results provide insight into the role of the gut microbiome in MAFLD associated with metabolic syndrome.
RESUMEN
Background: The microbiome has been shown in pre-clinical and epidemiological studies to be important in both the development and treatment of obesity and metabolic associated fatty liver disease (MAFLD). However, few studies have examined the role of the microbiome in the clinical response to calorie restriction. To explore this area, we performed a prospective study examining the association of the intestinal microbiome with weight loss and change in hepatic steatosis on a calorie-restricted diet. Methods: A prospective dietary intervention study of 80 overweight and obese participants was performed at the Greater West Los Angeles Veterans Affair Hospital. Patients were placed on a macronutrient standardized diet for 16 weeks, including 14 weeks of calorie restriction (500 calorie deficit). Body composition analysis by impedance, plasma lipid measurements, and ultrasound elastography to measure hepatic steatosis were performed at baseline and week 16. Intestinal microbiome composition was assessed using 16S rRNA gene sequencing. A per protocol analysis was performed on all subjects completing the trial (n = 46). Results: Study completers showed significant reduction in weight, body mass index, total cholesterol, low density lipoprotein, and triglyceride. Subjects who lost at least 5% of their body weight had significantly greater reduction in serum triglyceride and hepatic steatosis than those with <5% body weight loss. Enterococcus and Klebsiella were reduced at the end of the trial while Coprococcus and Collinsella were increased. There were also significant baseline microbiome differences between patients who had at least 5% weight loss as compared to those that did not. Lachnoclostridium was positively associated with hepatic steatosis and Actinomyces was positively associated with hepatic steatosis and weight. Baseline microbiome profiles were able to predict which patients lost at least 5% of their body weight with an AUROC of 0.80. Conclusion: Calorie restriction alters the intestinal microbiome and improves hepatic steatosis in those who experience significant weight loss. Baseline microbiome differences predict weight loss on a calorie-restricted diet and are associated with improvement in hepatic steatosis, suggesting a role of the gut microbiome in mediating the clinical response to calorie restriction.
RESUMEN
The presence of advanced fibrosis is an important measure of the severity of chronic liver disease. Prior works that have examined the gut microbiome as a novel biomarker for advanced fibrosis have only examined patients with nonalcoholic fatty liver disease. Therefore, our goal was to examine the gut microbiome across varying etiologies of liver disease to create a predictive model for liver fibrosis based upon a microbial signature. Stool samples were obtained from patients with chronic liver disease (n = 50) undergoing FibroScan (ultrasound elastography) at the VA Greater Los Angeles Healthcare System. Healthy control patients (n = 25) were also recruited as a reference population. Fecal samples underwent 16S ribosomal RNA sequencing. Using differentially abundant microbes, a random forest classifier model was created to distinguish advanced fibrosis from mild/moderate fibrosis. The findings were then validated in a separate cohort of chronic liver disease patients (n = 37). Etiologies for liver disease included non-alcoholic liver disease (58.0%), hepatitis C (26.0%), hepatitis B (10.0%), and alcohol (6.0%). Microbiome composition was distinct in liver patients with advanced fibrosis compared to those with minimal fibrosis and healthy controls (p = 0.003). In multivariate negative binomial modeling, 26 bacterial taxa were differentially abundant in patients with advanced fibrosis as compared to those with minimal/moderate fibrosis (q-value < 0.05). A random forests classifier based on these taxa had an AUROC of 0.90 to predict advanced fibrosis. Prevotella copri, which was enriched in patients with advanced fibrosis, was the most strongly predictive microbe in the classifier. The classifier had an AUROC of 0.82 for advanced fibrosis in the validation cohort and Prevotella copri remained the strongest predictive microbe for advanced fibrosis. There is a distinct microbial signature for patients with advanced fibrosis independent of liver disease etiology and other comorbidities. These results suggest that microbial profiles can be used as a non-invasive marker for advanced fibrosis and support the hypothesis that microbes and their metabolites contribute to hepatic fibrosis.
Asunto(s)
Enfermedad Hepática en Estado Terminal/genética , Microbioma Gastrointestinal/genética , Cirrosis Hepática/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Adulto , Anciano , Enfermedad Hepática en Estado Terminal/complicaciones , Enfermedad Hepática en Estado Terminal/microbiología , Enfermedad Hepática en Estado Terminal/patología , Heces/microbiología , Femenino , Humanos , Hígado/microbiología , Hígado/patología , Cirrosis Hepática/complicaciones , Cirrosis Hepática/microbiología , Cirrosis Hepática/patología , Masculino , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/microbiología , Enfermedad del Hígado Graso no Alcohólico/patología , Prevotella/aislamiento & purificación , Prevotella/patogenicidad , Índice de Severidad de la EnfermedadRESUMEN
BACKGROUND: Alterations in brain-gut-microbiome interactions have been implicated as an important factor in obesity. This study aimed to explore the relationship between food addiction (FA) and the brain-gut-microbiome axis, using a multi-omics approach involving microbiome data, metabolomics, and brain imaging. METHODS: Brain magnetic resonance imaging was obtained in 105 females. FA was defined by using the Yale Food Addiction Scale. Fecal samples were collected for sequencing and metabolomics. Statistical analysis was done by using multivariate analyses and machine learning algorithms. RESULTS: Of the females with obesity, 33.3% exhibited FA as compared with 5.3% and 0.0% of females with overweight and normal BMI, respectively (P = 0.0001). Based on a multilevel sparse partial least square discriminant analysis, there was a difference in the gut microbiome of females with FA versus those without. Differential abundance testing showed Bacteroides, Megamonas, Eubacterium, and Akkermansia were statistically associated with FA (q < 0.05). Metabolomics showed that indolepropionic acid was inversely correlated with FA. FA was also correlated with increased connectivity within the brain's reward network, specifically between the intraparietal sulcus, brain stem, and putamen. CONCLUSIONS: This is the first study to examine FA along the brain-gut-microbiome axis and it supports the idea of targeting the brain-gut-microbiome axis for the treatment of FA and obesity.
Asunto(s)
Encéfalo/fisiopatología , Adicción a la Comida/genética , Microbioma Gastrointestinal/genética , Metabolómica/métodos , Obesidad/genética , Adolescente , Adulto , Femenino , Humanos , Persona de Mediana Edad , Adulto JovenRESUMEN
BACKGROUND: The microbiota plays an important role in HIV pathogenesis in humans. Microbiota can impact health through several pathways such as increasing inflammation in the gut, metabolites of bacterial origin, and microbial translocation from the gut to the periphery which contributes to systemic chronic inflammation and immune activation and the development of AIDS. Unlike HIV-infected humans, SIV-infected vervet monkeys do not experience gut dysfunction, microbial translocation, and chronic immune activation and do not progress to immunodeficiency. Here, we provide the first reported characterization of the microbial ecosystems of the gut and genital tract in a natural nonprogressing host of SIV, wild vervet monkeys from South Africa. RESULTS: We characterized fecal, rectal, vaginal, and penile microbiomes in vervets from populations heavily infected with SIV from diverse locations across South Africa. Geographic site, age, and sex affected the vervet microbiome across different body sites. Fecal and vaginal microbiome showed marked stratification with three enterotypes in fecal samples and two vagitypes, which were predicted functionally distinct within each body site. External bioclimatic factors, biome type, and environmental temperature influenced microbiomes locally associated with vaginal and rectal mucosa. Several fecal microbial taxa were linked to plasma levels of immune molecules, for example, MIG was positively correlated with Lactobacillus and Escherichia/Shigella and Helicobacter, and IL-10 was negatively associated with Erysipelotrichaceae, Anaerostipes, Prevotella, and Anaerovibrio, and positively correlated with Bacteroidetes and Succinivibrio. During the chronic phase of infection, we observed a significant increase in gut microbial diversity, alterations in community composition (including a decrease in Proteobacteria/Succinivibrio in the gut) and functionality (including a decrease in genes involved in bacterial invasion of epithelial cells in the gut), and partial reversibility of acute infection-related shifts in microbial abundance observed in the fecal microbiome. As part of our study, we also developed an accurate predictor of SIV infection using fecal samples. CONCLUSIONS: The vervets infected with SIV and humans infected with HIV differ in microbial responses to infection. These responses to SIV infection may aid in preventing microbial translocation and subsequent disease progression in vervets, and may represent host microbiome adaptations to the virus. Video Abstract.
Asunto(s)
Microbioma Gastrointestinal , Microbiota , Enfermedades de los Monos/microbiología , Recto/microbiología , Síndrome de Inmunodeficiencia Adquirida del Simio/microbiología , Virus de la Inmunodeficiencia de los Simios/fisiología , Vagina/microbiología , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Chlorocebus aethiops/microbiología , Heces/microbiología , Femenino , Masculino , Enfermedades de los Monos/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/virologíaRESUMEN
BACKGROUND: High protein calorie restriction diets have shown clinical efficacy for obesity, but the mechanisms are not fully known. The intestinal microbiome is a mediator of obesity and preclinical data support an effect of high protein diet (HPD) on the gut microbiome of obesity, but there are few studies in humans. METHODS: To address this, we conducted a dietary intervention trial of 80 overweight and obese subjects who were randomized to a calorie-restricted high protein diet (HPD) (30% calorie intake) or calorie-restricted normal protein diet (NPD) (15%) for 8 weeks. Baseline dietary intake patterns were assessed by the Diet History Questionnaire III. Longitudinal fecal sampling was performed at baseline, week 1, week 2, week 4, week 6, and week 8, for a total of 365 samples. Intestinal microbiome composition was assessed by 16S rRNA gene sequencing. RESULTS: At baseline, microbial composition was associated with fiber and protein intake. Subjects on the HPD showed a significant increase in microbial diversity as measured by the Shannon index compared to those on the NPD. The HPD was also associated with significant differences in microbial composition after treatment compared to the NPD. Both diets induced taxonomic shifts compared to baseline, including enrichment of Akkermansia spp. and Bifidobacterium spp. and depletion of Prevotella spp. Conclusion: These findings provide evidence that weight loss diets alter the gut microbiome in obesity and suggest differential effects of HPDs compared to NPDs which may influence the clinical response to HPD.
Asunto(s)
Restricción Calórica , Dieta Rica en Proteínas , Dieta Reductora , Microbioma Gastrointestinal , Obesidad/dietoterapia , Obesidad/microbiología , Adulto , Anciano , Carbohidratos de la Dieta/administración & dosificación , Fibras de la Dieta/administración & dosificación , Ingestión de Energía , Heces/microbiología , Femenino , Humanos , Masculino , Persona de Mediana EdadRESUMEN
Rodents develop activity-based anorexia (ABA) when exposed to a restricted feeding schedule and allowed free access to a running wheel. These conditions lead to a life-threatening reduction in body weight. However, rodents exposed to only one of these conditions ultimately adapt to re-establish normal body weight. Although increased running coupled with reduction in voluntary food intake appear paradoxical under ABA conditions, ABA behavior is observed across numerous mammalian species. The ABA paradigm provides an animal model for anorexia nervosa (AN), an eating disorder with severe dysregulation of appetite-behavior. Subjects are singly housed with free access to a running wheel. Each day, the subject is offered food for a limited amount of time. During the course of the experiment, a subject's body weight decreases from high activity and low caloric intake. The duration of the study varies based on how long food is offered daily, the type of food offered, the strain of mouse, if drugs are being tested, and environmental factors. A lack of effective pharmacological treatments for AN patients, their low quality of life, high cost of treatment, and their high mortality rate indicate the urgency to further research AN. We provide a basic outline for performing ABA experiments with mice, offering a method to investigate AN-like behavior in order to develop novel therapies. This protocol is optimized for use in Balb/cJ mice, but can easily be manipulated for other strains, providing great flexibility in working with different questions, especially related to genetic factors of ABA.
Asunto(s)
Anorexia/diagnóstico , Condicionamiento Físico Animal/psicología , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , RatonesRESUMEN
RATIONALE: Serotonin-1B receptor (5-HT1BR) agonist treatment induces obsessive-compulsive disorder (OCD)-like behaviors including locomotor stereotypy, prepulse inhibition deficits, and delayed alternation disruptions, which are selectively prevented by clinically effective OCD treatment. However, the role of 5-HT1BRs in modulating other repetitive behaviors or OCD-like patterns of brain activation remains unclear. OBJECTIVES: We assessed the effects of 5-HT1BR agonism on digging, grooming, and open field behaviors in mice. We also quantified effects on neuronal activation in brain regions overactivated in OCD. Finally, we assessed whether effects of the 5-HT1BR challenge could be blocked by clinically effective, but not ineffective, drug treatments. METHODS: Mice were tested in open field, dig, and splash tests after acute treatment with saline, 1, 3, 5, or 10 mg/kg RU24969 (5-HT1B/1A agonist). Behavioral effects of RU24969 were also tested following co-treatment with vehicle, 1 mg/kg WAY100635 (5-HT1A antagonist) and 5 or 10 mg/kg GR127935 (5HT1B/D antagonist). Separate mice were behaviorally assessed following chronic pretreatment with vehicle with 10 mg/kg fluoxetine or 20 mg/kg desipramine and acute treatment with saline or 10 mg/kg RU24969. Brains were analyzed for Fos expression in the orbitofrontal cortex, the dorsal striatum, and the cerebellum. RESULTS: RU24969 induced robust locomotor stereotypy and decreased rearing, digging, and grooming. Effects were blocked by GR127935 but not by WAY100635. RU24969 also increased Fos expression in the dorsal striatum. Chronic fluoxetine, but not desipramine, alleviated 5-HT1BR-induced effects. CONCLUSIONS: We report novel 5-HT1BR-induced behaviors and striatal activation that were alleviated only by clinically effective pharmacological OCD treatment. Studying the mechanisms underlying these effects could provide insight into OCD pathophysiology.