RESUMEN
Passerine birds have a supernumerary chromosome in their germ cells called the germline-restricted chromosome (GRC). The GRC was first discovered more than two decades ago in zebra finch but recent studies have suggested that it is likely present in all passerines, the most species rich avian order, encompassing more than half of all modern bird species. Despite its wide taxonomic distribution, studies on this chromosome are still scarce and limited to a few species. Here, we cytogenetically analyzed the GRC in five closely related estrildid finch species of the genus Lonchura. We show that the GRC varies enormously in size, ranging from a tiny micro-chromosome to one of the largest macro-chromosomes in the cell, not only among recently diverged species but also within species and sometimes even between germ cells of a single individual. In Lonchura atricapilla, we also observed variation in GRC copy number among male germ cells of a single individual. Finally, our analysis of hybrids between two Lonchura species with noticeably different GRC size directly supported maternal inheritance of the GRC. Our results reveal the extraordinarily dynamic nature of the GRC, which might be caused by frequent gains and losses of sequences on this chromosome leading to substantial differences in genetic composition of the GRC between and even within species. Such differences might theoretically contribute to reproductive isolation between species and thus accelerate the speciation rate of passerine birds compared to other bird lineages.
Asunto(s)
Pinzones , Passeriformes , Animales , Cromosomas/genética , Femenino , Pinzones/genética , Células Germinativas , Masculino , Passeriformes/genéticaRESUMEN
Chromosomal inversions have been identified in many natural populations and can be responsible for novel traits and rapid adaptation. In zebra finch, a large region on the Z chromosome has been subject to multiple inversions, which have pleiotropic effects on multiple traits but especially on sperm phenotypes, such as midpiece and flagellum length. To understand the effect, the Z inversion has on these traits, we examined testis and liver transcriptomes of young males at different maturation times. We compared gene expression differences among three inversion karyotypes: AA, B*B* and AB*, where B* denotes the inverted regions on Z with respect to A. In testis, 794 differentially expressed genes were found and most of them were located on chromosome Z. They were functionally enriched for sperm-related traits. We also identified clusters of co-expressed genes that matched with the inversion-related sperm phenotypes. In liver, there were some enriched functions and some overrepresentation on chromosome Z with similar location as in testis. In both tissues, the overrepresented genes were located near the distal end of Z but also in the middle of the chromosome. For the heterokaryotype, we observed several genes with one allele being dominantly expressed, similar to expression patterns in one or the other homokaryotype. This was confirmed with SNPs for three genes, and interestingly one gene, DMGDH, had allele-specific expression originating mainly from one inversion haplotype in the testis, yet both inversion haplotypes were expressed equally in the liver. This karyotype-specific difference in tissue-specific expression suggests a pleiotropic effect of the inversion and thus suggests a mechanism for divergent phenotypic effects resulting from an inversion.
RESUMEN
Macrophysiological research is vital to our understanding of mechanisms underpinning global life history variation and adaptation to diverse environments. Here, we examined latitudinal and elevational variation in a key substrate of energy metabolism and an emerging physiological component of pace-of-life syndromes, blood glucose concentration. Our data, collected from 61 European temperate and 99 Afrotropical passerine species, revealed that baseline blood glucose increases with both latitude and elevation, whereas blood glucose stress response shows divergent directions, being stronger at low latitudes and high elevations. Low baseline glucose in tropical birds, compared to their temperate counterparts, was mainly explained by their low fecundity, consistent with the slow pace-of-life syndrome in the tropics. In contrast, elevational variation in this trait was decoupled from fecundity, implying a unique montane pace-of-life syndrome combining slow-paced life histories with fast-paced physiology. The observed patterns suggest that pace-of-life syndromes do not evolve along the single fast-slow axis.
Asunto(s)
Rasgos de la Historia de Vida , Passeriformes , Altitud , Animales , Glucemia , Metabolismo Energético , FertilidadRESUMEN
Tropical bird species are characterized by a comparatively slow pace of life, being predictably different from their temperate zone counterparts in their investments in growth, survival and reproduction. In birds, the development of functional plumage is often considered energetically demanding investment, with consequences on individual fitness and survival. However, current knowledge of interspecific variation in feather growth patterns is mostly based on species of the northern temperate zone. We evaluated patterns in tail feather growth rates (FGR) and feather quality (stress-induced fault bar occurrence; FBO), using 1518 individuals of 167 species and 39 passerine families inhabiting Afrotropical and northern temperate zones. We detected a clear difference in feather traits between species breeding in the temperate and tropical zones, with the latter having significantly slower FGR and three times higher FBO. Moreover, trans-Saharan latitudinal migrants resembled temperate zone residents in that they exhibited a comparatively fast FGR and low FBO, despite sharing moulting environments with tropical species. Our results reveal convergent latitudinal shifts in feather growth investments (latitudinal syndrome) across unrelated passerine families and underscore the importance of breeding latitude in determining cross-species variation in key avian life-history traits.
Asunto(s)
Muda , Passeriformes , Animales , Cruzamiento , Plumas , Humanos , ReproducciónRESUMEN
The literature suggests that small genomes promote invasion in plants, but little is known about the interaction of genome size with other traits or about the role of genome size during different phases of the invasion process. By intercontinental comparison of native and invasive populations of the common reed Phragmites australis, we revealed a distinct relationship between genome size and invasiveness at the intraspecific level. Monoploid genome size was the only significant variable that clearly separated the North American native plants from those of European origin. The mean Cx value (the amount of DNA in one chromosome set) for source European native populations was 0.490 ± 0.007 (mean ± SD), for North American invasive 0.506 ± 0.020, and for North American native 0.543 ± 0.021. Relative to native populations, the European populations that successfully invaded North America had a smaller genome that was associated with plant traits favoring invasiveness (long rhizomes, early emerging abundant shoots, resistance to aphid attack, and low C:N ratio). The knowledge that invasive populations within species can be identified based on genome size can be applied to screen potentially invasive populations of Phragmites in other parts of the world where they could grow in mixed stands with native plants, as well as to other plant species with intraspecific variation in invasion potential. Moreover, as small genomes are better equipped to respond to extreme environmental conditions such as drought, the mechanism reported here may represent an emerging driver for future invasions and range expansions.
Asunto(s)
Áfidos , Poaceae/genética , Animales , Especies Introducidas , América del Norte , Fenotipo , PlantasRESUMEN
The fatty acid composition of biological membranes has been hypothesised to be a key molecular adaptation associated with the evolution of metabolic rates, ageing, and life span - the basis of the membrane pacemaker hypothesis (MPH). MPH proposes that highly unsaturated membranes enhance cellular metabolic processes while being more prone to oxidative damage, thereby increasing the rates of metabolism and ageing. MPH could, therefore, provide a mechanistic explanation for trade-offs between longevity, fecundity, and metabolic rates, predicting that short-lived species with fast metabolic rates and higher fecundity would have greater levels of membrane unsaturation. However, previous comparative studies testing MPH provide mixed evidence regarding the direction of covariation between fatty acid unsaturation and life span or metabolic rate. Moreover, some empirical studies suggest that an n-3/n-6 PUFA ratio or the fatty acid chain length, rather than the overall unsaturation, could be the key traits coevolving with life span. In this study, we tested the coevolution of liver fatty acid composition with maximum life span, annual fecundity, and basal metabolic rate (BMR), using a recently published data set comprising liver fatty acid composition of 106 avian species. While statistically controlling for the confounding effects of body mass and phylogeny, we found no support for long life span evolving with low fatty acid unsaturation and only very weak support for fatty acid unsaturation acting as a pacemaker of BMR. Moreover, our analysis provided no evidence for the previously reported links between life span and n-3 PUFA/total PUFA or MUFA proportion. Our results rather suggest that long life span evolves with long-chain fatty acids irrespective of their degree of unsaturation as life span was positively associated with at least one long-chain fatty acid of each type (i.e., SFA, MUFA, n-6 PUFA, and n-3 PUFA). Importantly, maximum life span, annual fecundity, and BMR were associated with different fatty acids or fatty acid indices, indicating that longevity, fecundity, and BMR coevolve with different aspects of fatty acid composition. Therefore, in addition to posing significant challenges to MPH, our results imply that fatty acid composition does not pose an evolutionary constraint underpinning life-history trade-offs at the molecular level.
RESUMEN
Quantitative data on local variation in patterns of occurrence of common carnivore species, such as the red fox, European badger, or martens in central Europe are largely missing. We conducted a study focusing on carnivore ecology and distribution in a cultural landscape with the use of modern technology. We placed 73 automated infra-red camera traps into four different habitats differing in water availability and canopy cover (mixed forest, wetland, shrubby grassland and floodplain forest) in the Polabí region near Prague, Czech Republic. Each habitat was represented by three or four spatially isolated sites within which the camera traps were distributed. During the year of the study, we recorded nine carnivore species, including the non-native golden jackal. Habitats with the highest numbers of records pooled across all species were wetland (1279) and shrubby grassland (1014); fewer records were made in mixed (876) and floodplain forest (734). Habitat had a significant effect on the number of records of badger and marten, and a marginally significant effect on fox. In terms of seasonal dynamics, there were significant differences in the distribution of records among seasons in fox, marginally significant in least weasel, and the occurrence among seasons did not differ for badger and marten. In the summer, fox and marten were more active than expected by chance during the day, while the pattern was opposite in winter when they were more active during the night. Our findings on habitat preferences and circadian and seasonal activity provided the first quantitative data on patterns whose existence was assumed on the basis of conventional wisdom. Our study demonstrates the potential of a long-term monitoring approach based on infra-red camera traps. Generally, the rather frequent occurrence of recorded species indicates that most carnivore species are thriving in current central-European landscapes characterized by human-driven disturbances and urbanization.
RESUMEN
A golden jackal (Canis aureus) individual was recorded ~40 km east of Prague in the Czech Republic. It is the first record of a living golden jackal in the country; up to now several individuals have been recorded but all of them were either shot dead or killed by a vehicle. The observed animal was documented by camera traps set up for research of carnivore diversity in different habitats in the study area. It was first photographed on 19 June 2015, and in total there were 57 records made by 12 traps until 24 March 2016 when the animal was still present in the area. Forty-nine of the 57 records were made in a shrubby grassland over an area of ~100 ha, 39% of sightings were during the day and 61% in the night. There were two distinct peaks in the circadian activity of the animal, from 4 to 10 a.m., and from 6 p.m. to midnight. We also review the verified records of the golden jackal in the Czech Republic, some of which were only published in local hunting magazines. However, the observation reported in this paper represents the first evidence of a long-term occurrence in Europe of the same golden jackal individual, that persisted for at least nine months and over winter, northwest of Hungarian-Austrian border where the population has been known to reproduce.