Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Genet Mol Biol ; 47(2): e20230030, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626572

RESUMEN

Genomic effect variants associated with survival and protection against complex diseases vary between populations due to microevolutionary processes. The aim of this study was to analyse diversity and distribution of effect variants in a context of potential positive selection. In total, 475 individuals of Lithuanian origin were genotyped using high-throughput scanning and/or sequencing technologies. Allele frequency analysis for the pre-selected effect variants was performed using the catalogue of single nucleotide polymorphisms. Comparison of the pre-selected effect variants with variants in primate species was carried out to ascertain which allele was derived and potentially of protective nature. Recent positive selection analysis was performed to verify this protective effect. Four variants having significantly different frequencies compared to European populations were identified while two other variants reached borderline significance. Effect variant in SLC30A8 gene may potentially protect against type 2 diabetes. The existing paradox of high rates of type 2 diabetes in the Lithuanian population and the relatively high frequencies of potentially protective genome variants against it indicate a lack of knowledge about the interactions between environmental factors, regulatory regions, and other genome variation. Identification of effect variants is a step towards better understanding of the microevolutionary processes, etiopathogenetic mechanisms, and personalised medicine.

2.
Genet Res (Camb) ; 99: e6, 2017 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-28851476

RESUMEN

Next-generation sequencing (NGS) became an effective approach for finding novel causative genomic variants of genetic disorders and is increasingly used for diagnostic purposes. Public variant databases that gather data of pathogenic variants are being relied upon as a source for clinical diagnosis. However, research of pathogenic variants using public databases data could be carried out not only in patients, but also in healthy people. This could provide insights into the most common recessive disorders in populations. The study aim was to use NGS and data from the ClinVar database for the identification of pathogenic variants in the exomes of healthy individuals from the Lithuanian population. To achieve this, 96 exomes were sequenced. An average of 42 139 single-nucleotide variants (SNVs) and 2306 short INDELs were found in each individual exome. Pooled data of study exomes provided a total of 243 192 unique SNVs and 31 623 unique short INDELs. Three hundred and twenty-one unique SNVs were classified as pathogenic. Comparison of the European data from the 1000 Genomes Project with our data revealed five pathogenic genomic variants that are inherited in an autosomal recessive pattern and that statistically significantly differ from the European population data.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Bases de Datos de Ácidos Nucleicos , Exoma , Variación Genética/genética , Genoma Humano , Genómica , Humanos , Mutación INDEL/genética , Mutación , Polimorfismo de Nucleótido Simple/genética
3.
Food Sci Nutr ; 9(8): 4310-4321, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34401081

RESUMEN

Taste has strong evolutionary basis in the sense of survival by influencing our behavior to obtain food/medicine or avoid poisoning. It is a complex trait and varies among individuals and distinct populations. We aimed to investigate the association between known genetic factors (673 SNPs) and taste preference in the Lithuanian population, as well as to determine a reasonable method for qualitative evaluation of a specific taste phenotype for further genetic analysis. Study group included individuals representing six ethnolinguistic regions of Lithuania. Case and control groups for each taste were determined according to the answers selected to the taste-specific and frequency of specific food consumption questions. Sample sizes (case/control) for each taste are as follows: sweetness (55/179), bitterness (82/208), sourness (32/259), saltiness (42/249), and umami (96/190). Genotypes were extracted from the Illumina HumanOmniExpress-12v1.1 arrays' genotyping data. Analysis was performed using PLINK v1.9. We found associations between the main known genetic factors and four taste preferences in the Lithuanian population: sweetness-genes TAS1R3, TAS1R2, and GNAT3 (three SNPs); bitterness-genes CA6 and TAS2R38 (six SNPs); sourness-genes PKD2L1, ACCN2, PKD1L3, and ACCN1 (48 SNPs); and saltiness-genes SCNN1B and TRPV1 (five SNPs). We found our questionnaire as a beneficial aid for qualitative evaluation of taste preference. This was the first initiative to analyze genetic factors related to taste preference in the Lithuanian population. Besides, this study reproduces, supports, and complements results of previous limited taste genetic studies or ones that lack comprehensive results concerning distinct (ethnic) human populations.

4.
Mol Genet Genomic Med ; 7(9): e878, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31325247

RESUMEN

BACKGROUND: Preaxial polydactyly type IV, also referred as polysyndactyly, has been described in a few syndromes. We present three generations of a family with preaxial polydactyly type IV and other clinical features of Greig cephalopolysyndactyly syndrome (GCPS). METHODS AND RESULTS: Sequencing analysis of the GLI3 coding region identified a novel donor splice site variant NC_000007.14(NM_000168.6):c.473+3A>T in the proband and the same pathogenic variant was subsequently identified in other affected family members. Functional analysis based on Sanger sequencing of the proband's complementary DNA (cDNA) sample revealed that the splice site variant c.473+3A>T disrupts the original donor splice site, thus leading to exon 4 skipping. Based on further in silico analysis, this pathogenic splice site variant consequently results in a truncated protein NP_000159.3:p.(His123Argfs*57), which lacks almost all functionally important domains. Therefore, functional cDNA analysis confirmed that the haploinsufficiency of the GLI3 is the cause of GCPS in the affected family members. CONCLUSION: Despite the evidence provided, pathogenic variants in the GLI3 do not always definitely correlate with syndromic or nonsyndromic clinical phenotypes associated with this gene. For this reason, further transcriptomic and proteomic evaluation could be suggested.


Asunto(s)
Acrocefalosindactilia/genética , Predisposición Genética a la Enfermedad/genética , Proteínas del Tejido Nervioso/genética , Proteína Gli3 con Dedos de Zinc/genética , Acrocefalosindactilia/diagnóstico por imagen , Acrocefalosindactilia/fisiopatología , Niño , ADN Complementario , Femenino , Humanos , Persona de Mediana Edad , Mutación , Proteínas del Tejido Nervioso/metabolismo , Linaje , Fenotipo , Proteómica , Análisis de Secuencia de ADN , Transcriptoma , Proteína Gli3 con Dedos de Zinc/metabolismo
5.
Front Genet ; 9: 315, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30154829

RESUMEN

In the last decade, one of the biggest challenges in genomics research has been to distinguish definitive pathogenic variants from all likely pathogenic variants identified by next-generation sequencing. This task is particularly complex because of our lack of knowledge regarding overall genome variation and pathogenicity of the variants. Therefore, obtaining sufficient information about genome variants in the general population is necessary as such data could be used for the interpretation of de novo mutations (DNMs) in the context of patient's phenotype in cases of sporadic genetic disease. In this study, data from whole-exome sequencing of the general population in Lithuania were directly examined. In total, 84 (VarScan) and 95 (VarSeqTM) DNMs were identified and validated using different algorithms. Thirty-nine of these mutations were considered likely to be pathogenic based on gene function, evolutionary conservation, and mutation impact. The mutation rate estimated per position pair per generation was 2.74 × 10-8 [95% CI: 2.24 × 10-8-3.35 × 10-8] (VarScan) and 2.4 × 10-8 [95% CI: 1.96 × 10-8-2.99 × 10-8] (VarSeqTM), with 1.77 × 10-8 [95% CI: 6.03 × 10-9-5.2 × 10-8] de novo indels per position per generation. The rate of germline DNMs in the Lithuanian population and the effects of the genomic and epigenetic context on DNM formation were calculated for the first time in this study, providing a basis for further analysis of DNMs in individuals with genetic diseases. Considering these findings, additional studies in patient groups with genetic diseases with unclear etiology may facilitate our ability to distinguish certain pathogenic or adaptive DNMs from tolerated background DNMs and to reliably identify disease-causing DNMs by their properties through direct observation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA