Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Anal Biochem ; 518: 9-15, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27815077

RESUMEN

The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has created an urgent need for new therapeutic agents capable of combating this threat. We have previously reported on the discovery of novel inhibitors targeting enzymes involved in the biosynthesis of wall teichoic acid (WTA) and demonstrated that these agents can restore ß-lactam efficacy against MRSA. In those previous reports pathway engagement of inhibitors was demonstrated by reduction in WTA levels measured by polyacrylamide gel electrophoresis. To enable a more rigorous analysis of these inhibitors we sought to develop a quantitative method for measuring whole-cell reductions in WTA. Herein we describe a robust methodology for hydrolyzing polymeric WTA to the monomeric component ribitol-N-acetylglucosamine coupled with measurement by LC-MS/MS. Critical elements of the protocol were found to include the time and temperature of hydrofluoric acid-mediated hydrolysis of polymeric WTA and optimization of these parameters is fully described. Most significantly, the assay enabled accurate and reproducible measurement of depletion EC50s for tunicamycin and representatives from the novel class of TarO inhibitors, the tarocins. The method described can readily be adapted to quantifying levels of WTA in tissue homogenates from a murine model of infection, highlighting the applicability for both in vitro and in vivo characterizations.


Asunto(s)
Espectrometría de Masas/métodos , Staphylococcus aureus Resistente a Meticilina/metabolismo , Ácidos Teicoicos/metabolismo , Cromatografía Liquida/métodos , Staphylococcus aureus Resistente a Meticilina/química , Ácidos Teicoicos/química , Tunicamicina/farmacología
2.
Bioorg Med Chem Lett ; 27(9): 2069-2073, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28284804

RESUMEN

Glucokinase (GK, hexokinase IV) is a unique hexokinase that plays a central role in mammalian glucose homeostasis. Glucose phosphorylation by GK in the pancreatic ß-cell is the rate-limiting step that controls glucose-stimulated insulin secretion. Similarly, GK-mediated glucose phosphorylation in hepatocytes plays a major role in increasing hepatic glucose uptake and metabolism and possibly lowering hepatic glucose output. Small molecule GK activators (GKAs) have been identified that increase enzyme activity by binding to an allosteric site. GKAs offer a novel approach for the treatment of Type 2 Diabetes Mellitus (T2DM) and as such have garnered much attention. We now report the design, synthesis, and biological evaluation of a novel series of 2,5,6-trisubstituted indole derivatives that act as highly potent GKAs. Among them, Compound 1 was found to possess high in vitro potency, excellent physicochemical properties, and good pharmacokinetic profile in rodents. Oral administration of Compound 1 at doses as low as 0.03mg/kg led to robust blood glucose lowering efficacy in 3week high fat diet-fed mice.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Activadores de Enzimas/química , Activadores de Enzimas/uso terapéutico , Glucoquinasa/metabolismo , Hipoglucemiantes/química , Hipoglucemiantes/uso terapéutico , Indoles/química , Indoles/uso terapéutico , Regulación Alostérica/efectos de los fármacos , Animales , Glucemia/análisis , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/metabolismo , Diseño de Fármacos , Activación Enzimática/efectos de los fármacos , Activadores de Enzimas/farmacocinética , Activadores de Enzimas/farmacología , Humanos , Hipoglucemiantes/farmacocinética , Hipoglucemiantes/farmacología , Indoles/farmacocinética , Indoles/farmacología , Insulina/sangre , Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL
3.
Bioorg Med Chem Lett ; 27(9): 2063-2068, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28284809

RESUMEN

Systemically acting glucokinase activators (GKA) have been demonstrated in clinical trials to effectively lower blood glucose in patients with type II diabetes. However, mechanism-based hypoglycemia is a major adverse effect that limits the therapeutic potential of these agents. We hypothesized that the predominant mechanism leading to hypoglycemia is GKA-induced excessive insulin secretion from pancreatic ß-cells at (sub-)euglycemic levels. We further hypothesized that restricting GK activation to hepatocytes would maintain glucose-lowering efficacy while significantly reducing hypoglycemic risk. Here we report the discovery of a novel series of carboxylic acid substituted GKAs based on pyridine-2-carboxamide. These GKAs exhibit preferential distribution to the liver versus the pancreas in mice. SAR studies led to the identification of a potent and orally active hepatoselective GKA, compound 6. GKA 6 demonstrated robust glucose lowering efficacy in high fat diet-fed mice at doses ⩾10mpk, with ⩾70-fold liver:pancreas distribution, minimal effects on plasma insulin levels, and significantly reduced risk of hypoglycemia.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Activadores de Enzimas/farmacología , Glucoquinasa/metabolismo , Hipoglucemiantes/farmacología , Piridinas/farmacología , Animales , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/metabolismo , Descubrimiento de Drogas , Activadores de Enzimas/química , Activadores de Enzimas/farmacocinética , Activadores de Enzimas/uso terapéutico , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacocinética , Hipoglucemiantes/uso terapéutico , Insulina/sangre , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Piridinas/química , Piridinas/farmacocinética , Piridinas/uso terapéutico
4.
J Lipid Res ; 51(9): 2611-8, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20453200

RESUMEN

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secreted protein that regulates hepatic low-density lipoprotein receptor (LDLR) levels in humans. PCSK9 has also been shown to regulate the levels of additional membrane-bound proteins in vitro, including the very low-density lipoprotein receptor (VLDLR), apolipoprotein E receptor 2 (ApoER2) and the beta-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1), which are all highly expressed in the CNS and have been implicated in Alzheimer's disease. To better understand the role of PCSK9 in regulating these additional target proteins in vivo, their steady-state levels were measured in the brain of wild-type, PCSK9-deficient, and human PCSK9 overexpressing transgenic mice. We found that while PCSK9 directly bound to recombinant LDLR, VLDLR, and apoER2 protein in vitro, changes in PCSK9 expression did not alter the level of these receptors in the mouse brain. In addition, we found no evidence that PCSK9 regulates BACE1 levels or APP processing in the mouse brain. In conclusion, our results suggest that while PCSK9 plays an important role in regulating circulating LDL cholesterol levels by reducing the number of hepatic LDLRs, it does not appear to modulate the levels of LDLR and other membrane-bound proteins in the adult mouse brain.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Encéfalo/metabolismo , Proteínas Relacionadas con Receptor de LDL/metabolismo , Receptores de LDL/metabolismo , Serina Endopeptidasas/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/anatomía & histología , Células HEK293 , Humanos , Masculino , Ratones , Ratones Noqueados , Proproteína Convertasa 9 , Proproteína Convertasas , Unión Proteica , Serina Endopeptidasas/genética
5.
Biochim Biophys Acta ; 1794(6): 961-7, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19236960

RESUMEN

Acetyl-CoA carboxylase (ACC) catalyzes the carboxylation of acetyl-CoA to form malonyl-CoA, a key metabolite in the fatty acid synthetic and oxidation pathways. The present study describes the steady-state kinetic analysis of a purified recombinant human form of the enzyme, namely ACC2, using a novel LC/MS/MS assay to directly measure malonyl-CoA formation. Four dimensional matrices, in which bicarbonate (HCO(3)(-)), ATP, acetyl-CoA, and citrate were varied, and global data fitting to appropriate steady-state equations were used to generate kinetic constants. Product inhibition studies support the notion that the enzyme proceeds through a hybrid (two-site) random Ter Ter mechanism, one that likely involves a two-step reaction at the biotin carboxylase domain. Citrate, a known activator of animal forms of ACC, activates both by increasing k(cat) and k(cat)/K(M) for ATP and acetyl-CoA.


Asunto(s)
Acetil-CoA Carboxilasa/química , Acetil-CoA Carboxilasa/antagonistas & inhibidores , Cromatografía Liquida , Humanos , Cinética , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Espectrometría de Masas en Tándem
6.
Cell Chem Biol ; 27(1): 32-40.e3, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31653597

RESUMEN

Proprotein convertase substilisin-like/kexin type 9 (PCSK9) is a serine protease involved in a protein-protein interaction with the low-density lipoprotein (LDL) receptor that has both human genetic and clinical validation. Blocking this protein-protein interaction prevents LDL receptor degradation and thereby decreases LDL cholesterol levels. Our pursuit of small-molecule direct binders for this difficult to drug PPI target utilized affinity selection/mass spectrometry, which identified one confirmed hit compound. An X-ray crystal structure revealed that this compound was binding in an unprecedented allosteric pocket located between the catalytic and C-terminal domain. Optimization of this initial hit, using two distinct strategies, led to compounds with high binding affinity to PCSK9. Direct target engagement was demonstrated in the cell lysate with a cellular thermal shift assay. Finally, ligand-induced protein degradation was shown with a proteasome recruiting tag attached to the high-affinity allosteric ligand for PCSK9.


Asunto(s)
Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Proproteína Convertasa 9/metabolismo , Proteolisis/efectos de los fármacos , Inhibidores de Serina Proteinasa/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Humanos , Ligandos , Modelos Moleculares , Estructura Molecular , Inhibidores de Serina Proteinasa/química , Bibliotecas de Moléculas Pequeñas/química
7.
Bioorg Med Chem Lett ; 19(10): 2804-7, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19359168

RESUMEN

BODIPY-labeled Soraphen A derivative 4 was synthesized and characterized as an acetyl-CoA carboxylase (ACC) binder. Biophysical measurements indicate that the molecule binds in the biotin carboxylase domain where Soraphen A has been shown to bind. The fluorescent label of the BODIPY can be used to biophysically identify a compound that binds to the Soraphen A site of the biotin carboxylase domain versus the carboxytransferase domain of ACC.


Asunto(s)
Acetil-CoA Carboxilasa/antagonistas & inhibidores , Compuestos de Boro/química , Macrólidos/química , Acetil-CoA Carboxilasa/metabolismo , Sitios de Unión , Compuestos de Boro/síntesis química , Cristalografía por Rayos X , Macrólidos/síntesis química , Estructura Terciaria de Proteína
8.
SLAS Discov ; 22(9): 1131-1141, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28763622

RESUMEN

We have developed and validated label-free, liquid chromatography-mass spectrometry (LC-MS)-based equilibrium direct and competition binding assays to quantitate small-molecule antagonist binding to recombinant human and mouse BLT1 receptors expressed in HEK 293 cell membranes. Procedurally, these binding assays involve (1) equilibration of the BLT1 receptor and probe ligand, with or without a competitor; (2) vacuum filtration through cationic glass fiber filters to separate receptor-bound from free probe ligand; and (3) LC-MS analysis in selected reaction monitoring mode for bound probe ligand quantitation. Two novel, optimized probe ligands, compounds 1 and 2, were identified by screening 20 unlabeled BLT1 antagonists for direct binding. Saturation direct binding studies confirmed the high affinity, and dissociation studies established the rapid binding kinetics of probe ligands 1 and 2. Competition binding assays were established using both probe ligands, and the affinities of structurally diverse BLT1 antagonists were measured. Both binding assay formats can be executed with high specificity and sensitivity and moderate throughput (96-well plate format) using these approaches. This highly versatile, label-free method for studying ligand binding to membrane-associated receptors should find broad application as an alternative to traditional methods using labeled ligands.

9.
J Inorg Biochem ; 100(12): 2108-16, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17070917

RESUMEN

The alpha-ketoglutate (alpha-KG)-dependent dioxygenases are a large class of mononuclear non-heme iron enzymes that require Fe(II), alpha-KG and dioxygen for catalysis, with the alpha-KG cosubstrate supplying the two additional electrons required for dioxygen activation. A sub-class of these enzymes exists in which the alpha-keto acid is covalently attached to the substrate, including (4-hydroxy)mandelate synthase (HmaS) and (4-hydroxyphenyl)pyruvate dioxygenase (HPPD) which utilize the same substrate but exhibit two different general reactivities (H-atom abstraction and electrophilic attack). Previous kinetic studies of Streptomyces avermitilis HPPD have shown that the substrate analog phenylpyruvate (PPA), which only differs from the normal substrate (4-hydroxyphenyl)pyruvate (HPP) by the absence of a para-hydroxyl group on the aromatic ring, does not induce a reaction with dioxygen. While an Fe(IV)O intermediate is proposed to be the reactive species in converting substrate to product, the key step utilizing O(2) to generate this species is the decarboxylation of the alpha-keto acid. It has been generally proposed that the two requirements for decarboxylation are bidentate coordination of the alpha-keto acid to Fe(II) and the presence of a 5C Fe(II) site for the O(2) reaction. Circular dichroism and magnetic circular dichroism studies have been performed and indicate that both enzyme complexes with PPA are similar with bidentate alpha-KG coordination and a 5C Fe(II) site. However, kinetic studies indicate that while HmaS reacts with PPA in a coupled reaction similar to the reaction with HPP, HPPD reacts with PPA in an uncoupled reaction at an approximately 10(5)-fold decreased rate compared to the reaction with HPP. A key difference is spectroscopically observed in the n-->pi( *) transition of the HPPD/Fe(II)/PPA complex which, based upon correlation to density functional theory calculations, is suggested to result from H-bonding between a nearby residue and the carboxylate group of the alpha-keto acid. Such an interaction would disfavor the decarboxylation reaction by stabilizing electron density on the carboxylate group such that the oxidative cleavage to yield CO(2) is disfavored.


Asunto(s)
3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/metabolismo , Ácidos Carboxílicos/química , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/química , Sitios de Unión , Dicroismo Circular , Cinética , Modelos Moleculares , Conformación Proteica , Especificidad por Sustrato
10.
Sci Rep ; 6: 25158, 2016 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-27116909

RESUMEN

G protein-coupled receptors (GPCRs) are an important class of drug targets. Quantitative analysis by global curve fitting of properly designed dose-dependent GPCR agonism and allosterism data permits the determination of all affinity and efficacy parameters based on a general operational model. We report here a quantitative and panoramic measure of receptor agonist and modulator equi-response and equi-occupancy selectivity calculated from these parameters. The selectivity values help to differentiate not only one agonist or modulator from another, but on-target from off-target receptor or functional pathway as well. Furthermore, in conjunction with target site free drug concentrations and endogenous agonist tones, the allosterism parameters and selectivity values may be used to predict in vivo efficacy and safety margins.


Asunto(s)
Receptores Acoplados a Proteínas G/agonistas , Algoritmos , Regulación Alostérica , Animales , Diseño de Fármacos , Humanos , Relación Estructura-Actividad
11.
Front Biosci (Schol Ed) ; 8(2): 278-97, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27100706

RESUMEN

This review provides a concise summary for state of the art, moderate to high throughput in vitro technologies being employed to study drug-target binding kinetics. These technologies cover a wide kinetic timescale spanning up to nine orders of magnitude from milliseconds to days. Automated stopped flow measures transient and (pre)steady state kinetics from milliseconds to seconds. For seconds to hours timescale kinetics we discuss surface plasmon resonance-based biosensor, global progress curve analysis for high throughput kinetic profiling of enzyme inhibitors and activators, and filtration plate-based radioligand or fluorescent binding assays for receptor binding kinetics. Jump dilution after pre-incubation is the preferred method for very slow kinetics lasting for days. The basic principles, best practices and simulated data for these technologies are described. Finally, the application of a universal label-free technology, liquid chromatography coupled tandem mass spectrometry (LC/MS/MS), is briefly reviewed. Select literature references are highlighted for in-depth understanding. A new reality is dawning wherein binding kinetics is an integral and routine part of mechanism of action elucidation and translational, quantitative pharmacology for drug discovery.


Asunto(s)
Descubrimiento de Drogas/métodos , Activadores de Enzimas/farmacocinética , Inhibidores Enzimáticos/farmacocinética , Ensayos Analíticos de Alto Rendimiento/métodos , Técnicas Biosensibles/métodos , Activadores de Enzimas/química , Activadores de Enzimas/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Farmacocinética , Resonancia por Plasmón de Superficie/métodos , Espectrometría de Masas en Tándem
12.
J Biomol Screen ; 21(10): 1034-1041, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27412534

RESUMEN

PCSK9 plays a significant role in regulating low-density lipoprotein (LDL) cholesterol levels and has become an important drug target for treating hypercholesterolemia. Although a member of the serine protease family, PCSK9 only catalyzes a single reaction, the autocleavage of its prodomain. The maturation of the proprotein is an essential prerequisite for the secretion of PCSK9 to the extracellular space where it binds the LDL receptor and targets it for degradation. We have found that a construct of proPCSK9 where the C-terminal domain has been truncated has sufficient stability to be expressed and purified from Escherichia coli for the in vitro study of autoprocessing. Using automated Western analysis, we demonstrate that autoprocessing exhibits the anticipated first-order kinetics. A high-throughput time-resolved fluorescence resonance energy transfer assay for autocleavage has been developed using a PCSK9 monoclonal antibody that is sensitive to the conformational changes that occur upon maturation of the proprotein. Kinetic theory has been developed that describes the behavior of both reversible and irreversible inhibitors of autocleavage. The analysis of an irreversible lactone inhibitor validates the expected relationship between potency and the reaction end point. An orthogonal liquid chromatography-mass spectrometry assay has also been implemented for the confirmation of hits from the antibody-based assays.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Hipercolesterolemia/tratamiento farmacológico , Proproteína Convertasa 9/química , Escherichia coli/genética , Transferencia Resonante de Energía de Fluorescencia/métodos , Células Hep G2 , Humanos , Hipercolesterolemia/genética , Cinética , Lactonas/antagonistas & inhibidores , Espectrometría de Masas/métodos , Inhibidores de PCSK9 , Proproteína Convertasa 9/genética , Conformación Proteica/efectos de los fármacos , Receptores de LDL/genética
14.
Expert Opin Drug Discov ; 10(7): 763-80, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25927503

RESUMEN

INTRODUCTION: G protein-coupled receptors represent the largest class of druggable targets and are known to be modulated by both orthosteric agonists and positive/negative allosteric modulators (PAMs/NAMs). Proper experimental design and data analysis for the dose matrix between an agonist and PAM or NAM are critical to elucidate the key parameters for understanding molecular mechanism and structure-activity relationship (SAR) in drug discovery. AREAS COVERED: The authors provide an overview and best practice recommendations on the quantitative analysis of receptor allosterism. The authors propose a simple classification system for receptor modulators on the basis of their efficacy and affinity modifiers. The authors also outline the optimal assay designs for both fixed dose screening and dose matrix study of receptor modulators. EXPERT OPINION: The authors recommend the global curve fitting approach to reliably yield system- and modulator-specific parameters for SAR ranking. Furthermore, the authors suggest that the uncertainty in maximal system response has insignificant impact on SAR ranking. The authors anticipate that systems pharmacology models integrating both binding kinetics and functional allosterism will be needed to address the inherent limitations of current allosterism models.


Asunto(s)
Diseño de Fármacos , Modelos Biológicos , Receptores Acoplados a Proteínas G/efectos de los fármacos , Regulación Alostérica/efectos de los fármacos , Sitio Alostérico , Descubrimiento de Drogas/métodos , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Relación Estructura-Actividad
16.
J Med Chem ; 52(19): 6142-52, 2009 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-19746978

RESUMEN

Type 2 diabetes is a polygenic disease which afflicts nearly 200 million people worldwide and is expected to increase to near epidemic levels over the next 10-15 years. Glucokinase (GK) activators are currently under investigation by a number of pharmaceutical companies with only a few reaching early clinical evaluation. A GK activator has the promise of potentially affecting both the beta-cells of the pancreas, by improving glucose sensitive insulin secretion, as well as the liver, by reducing uncontrolled glucose output and restoring post-prandial glucose uptake and storage as glycogen. Herein, we report our efforts on a sulfonamide chemotype with the aim to generate liver selective GK activators which culminated in the discovery of 3-cyclopentyl-N-(5-methoxy-thiazolo[5,4-b]pyridin-2-yl)-2-[4-(4-methyl-piperazine-1-sulfonyl)-phenyl]-propionamide (17c). This compound activated the GK enzyme (alphaK(a) = 39 nM) in vitro at low nanomolar concentrations and significantly reduced glucose levels during an oral glucose tolerance test in normal mice.


Asunto(s)
Glucoquinasa/efectos de los fármacos , Sulfonamidas/farmacología , Animales , Glucemia/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Prueba de Tolerancia a la Glucosa , Hipoglucemiantes/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Relación Estructura-Actividad , Sulfonamidas/uso terapéutico
17.
Biochem Biophys Res Commun ; 351(2): 481-4, 2006 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-17064666

RESUMEN

The potential therapeutic value of resveratrol in age-related disease settings including cancer, diabetes, and Alzheimer's has emerged from a rapidly growing body of experimental evidence. Protection from oxidative stress appears to be a common feature of resveratrol that may be mediated through SirT1, though more specific molecular mechanisms by which resveratrol mediates its effects remain unclear. This has prompted an upsurge in cell-based mechanistic studies, often incorporating reporter assays for pathway elucidation in response to resveratrol treatment. Here, we report that resveratrol potently inhibits firefly luciferase with a K(i) value of 2microM, and caution that this confounding element may lead to compromised data interpretation.


Asunto(s)
Antioxidantes/farmacología , Luciferasas de Luciérnaga/antagonistas & inhibidores , Estilbenos/farmacología , Animales , Línea Celular , Genes Reporteros , Luciferasas de Luciérnaga/genética , Luciferasas de Luciérnaga/metabolismo , Ratones , Resveratrol
18.
Proc Natl Acad Sci U S A ; 103(35): 12966-73, 2006 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-16920789

RESUMEN

(4-Hydroxy)mandelate synthase (HmaS) and (4-hydroxyphenyl)pyruvate dioxygenase (HPPD) are two alpha-keto acid dependent mononuclear non-heme iron enzymes that use the same substrate, (4-hydroxyphenyl)pyruvate, but exhibit two different general reactivities. HmaS performs hydrogen-atom abstraction to yield benzylic hydroxylated product (S)-(4-hydroxy)mandelate, whereas HPPD utilizes an electrophilic attack mechanism that results in aromatic hydroxylated product homogentisate. These enzymes provide a unique opportunity to directly evaluate the similarities and differences in the reaction pathways used for these two reactivities. An Fe(II) methodology using CD, magnetic CD, and variable-temperature, variable-field magnetic CD spectroscopies was applied to HmaS and compared with that for HPPD to evaluate the factors that affect substrate interactions at the active site and to correlate these to the different reactivities exhibited by HmaS and HPPD to the same substrate. Combined with density functional theory calculations, we found that HmaS and HPPD have similar substrate-bound complexes and that the role of the protein pocket in determining the different reactivities exhibited by these enzymes (hydrogen-atom abstraction vs. aromatic electrophilic attack) is to properly orient the substrate, allowing for ligand field geometric changes along the reaction coordinate. Elongation of the Fe(IV) O bond in the transition state leads to dominant Fe(III) O(*-) character, which significantly contributes to the reactivity with either the aromatic pi-system or the C H sigma-bond.


Asunto(s)
Hidrógeno/química , Proteínas de Hierro no Heme/química , 4-Hidroxifenilpiruvato Dioxigenasa/química , Dicroismo Circular , Biología Computacional , Análisis Espectral , Termodinámica
19.
Biochem Biophys Res Commun ; 338(1): 206-14, 2005 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-16197918

RESUMEN

(4-Hydroxyphenyl)pyruvate dioxygenase (HPPD) is an alpha-keto-acid-dependent dioxygenase which catalyzes the conversion of (4-hydroxyphenyl)pyruvate (HPP) to homogentisate as part of tyrosine catabolism. While several di- and tri-ketone alkaloids are known as inhibitors of HPPD and used commercially as herbicides, one such inhibitor, [2-nitro-4-(trifluoromethyl)benzoyl]-1,3-cyclohexanedione (NTBC), has also been used therapeutically to treat type I tyrosinemia and alkaptonuria in humans. To gain further insight into the mechanism of inhibition by NTBC, a combination of CD/MCD spectroscopy and DFT calculations of HPPD/Fe(II)/NTBC has been performed to evaluate the contribution of the Fe(II)-NTBC bonding interaction to the high affinity of this drug for the enzyme. The results indicate that the bonding of NTBC to Fe(II) is very similar to that for HPP, both involving similar pi-backbonding interactions between NTBC/HPP and Fe(II). Combined with the result that the calculated binding energy of NTBC is, in fact, approximately 3 kcal/mol less than that for HPP, the bidentate coordination of NTBC to Fe(II) is not solely responsible for its extremely high affinity for the enzyme. Thus, the pi-stacking interactions between the aromatic rings of NTBC and two phenyalanine residues, as observed in the crystallography of the HPPD/Fe(II)/NTBC complex, appear to be responsible for the observed high affinity of drug binding.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa/antagonistas & inhibidores , 4-Hidroxifenilpiruvato Dioxigenasa/química , Ciclohexanonas/química , Hierro/química , 4-Hidroxifenilpiruvato Dioxigenasa/metabolismo , Sitios de Unión/efectos de los fármacos , Sitios de Unión/fisiología , Dominio Catalítico , Dicroismo Circular , Biología Computacional/métodos , Ciclohexanonas/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Hierro/metabolismo , Streptomyces/enzimología , Termodinámica
20.
Biochemistry ; 44(19): 7189-99, 2005 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-15882057

RESUMEN

(4-Hydroxyphenyl)pyruvate dioxygenase (HPPD) catalyzes the conversion of (4-hydroxyphenyl)pyruvate (HPP) to homogentisate (HG). This reaction involves decarboxylation, substituent migration, and aromatic oxygenation in a single catalytic cycle. HPPD is a unique member of the alpha-keto acid dependent oxygenases that require Fe(II) and an alpha-keto acid substrate to oxygenate or oxidize an organic molecule. We have examined the reaction coordinate of HPPD from Streptomyces avermitilis using rapid mixing pre-steady-state methods in conjunction with steady-state kinetic analyses. Acid quench reactions and product analysis of homogentisate indicate that HPPD as isolated is fully active and that experiments limited in dioxygen concentration with respect to that of the enzyme do involve a single turnover. These experiments indicate that during the course of one turnover the concentration of homogentisate is stoichiometric with enzyme concentration by approximately 200 ms, well before the completion of the catalytic cycle. Subsequent single turnover reactions were monitored spectrophotometrically under pseudo-first-order and matched concentration reactant conditions. Three spectrophotometrically distinct intermediates are observed to accumulate. The first of these is a relatively strongly absorbing species with maxima at 380 and 480 nm that forms with a rate constant (k(1)) of 7.4 x 10(4) M(-)(1) s(-)(1) and then decays to a second intermediate with a rate constant (k(2)) of 74 s(-)(1). The rate constant for the decay of the second intermediate (k(3)) is 13 s(-)(1) and is concomitant with the formation of the product, homogentisate, based on rapid quench and pre-steady-state fluorescence measurements. The rate constant for this process decreases to 7.6 s(-)(1) when deuterons are substituted for protons in the aromatic ring of the substrate. The release of product from the enzyme is rate limiting and occurs at 1.6 s(-)(1). This final event exhibits a kinetic isotope effect of 2 with deuterium oxide as the solvent, consistent with a solvent isotope effect on V(max) of 2.6 observed in steady-state experiments.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa/química , 4-Hidroxifenilpiruvato Dioxigenasa/metabolismo , Streptomyces/enzimología , Ácido 3,4-Dihidroxifenilacético/química , Ácido 3,4-Dihidroxifenilacético/metabolismo , Catálisis , Cromatografía Líquida de Alta Presión , Medición de Intercambio de Deuterio , Compuestos Ferrosos/química , Compuestos Ferrosos/metabolismo , Ácido Homogentísico/química , Ácido Homogentísico/metabolismo , Cinética , Espectrofotometría , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA