Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Materials (Basel) ; 17(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38399131

RESUMEN

BACKGROUND: Bone morphogenetic protein-2 (bmp-2) has a high potential to induce bone tissue formation in skeletal muscles. We developed a bone induction system in skeletal muscles using the bmp-2 gene through in vivo electroporation. Natural bone tissues with skeletal muscles can be considered potential candidates for biomaterials. However, our previous system using plate-type electrodes did not achieve a 100% success rate in inducing bone tissues in skeletal muscles. In this study, we aimed to enhance the efficiency of bone tissue formation in skeletal muscles by using a non-viral bmp-2 gene expression plasmid vector (pCAGGS-bmp-2) and needle-type electrodes. METHODS: We injected the bmp-2 gene with pCAGGS-bmp-2 into the skeletal muscles of rats' legs and immediately placed needle-type electrodes there. Skeletal tissues were then observed on the 21st day after gene transfer using soft X-ray and histological analyses. RESULTS: The use of needle-type electrodes resulted in a 100% success rate in inducing bone tissues in skeletal muscles. In contrast, the plate-type electrodes only exhibited a 33% success rate. Thus, needle-type electrodes can be more efficient and reliable for transferring the bmp-2 gene to skeletal muscles, making them potential biomaterials for repairing bone defects.

2.
Arch Oral Biol ; 139: 105433, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35525017

RESUMEN

OBJECTIVE: This study aimed to determine the effect of C-type natriuretic peptide (CNP) overexpression on craniofacial growth during the pubertal growth period in mice. DESIGN: Six-week-old C57BL/6 mice were injected with pLIVE-Empty vectors (Control mice) and pLIVE-NPPC vectors (CNP mice) using the hydrodynamic method. Morphological analyses were performed at the age of 12 weeks. RESULTS: Micro-computed tomography (µCT) images showed significant (p < 0.05) hyperplasia in the maxilla along the sagittal plane (CNP mice: 13.754 mm, Control mice: 13.215 mm). Further, the images revealed significant bone overgrowth in the sagittal direction in the sphenoid (CNP mice: 6.936 mm, Control mice: 6.411 mm) and occipital (CNP mice: 4.051 mm, Control mice: 3.784 mm) bones in the CNP mice compared with that in the Control mice. Compared with SAP-Nppc-Tg mice in previous studies, although there was no effect on nose length and nasal bone length, the effect was sufficient to improve craniofacial hypogrowth. Furthermore, CNP promoted sagittal cranial growth by increasing the thickness of the spheno-occipital synchondrosis in organ cultures and nasal septal cartilage in micromass cultures, which were derived from 6-week-old mice. CONCLUSIONS: We have previously shown that the elevated blood levels of CNP from the neonatal period affect midfacial skeletogenesis by promoting endochondral ossification using mice (SAP-Nppc-Tg mice). The overexpression of CNP, even in 6-weeks-old mice, promoted growth in the sagittal direction within the maxillary region. These findings indicate the therapeutic potential of CNP for the treatment of midfacial hypoplasia during the pubertal growth spurt.


Asunto(s)
Péptido Natriurético Tipo-C , Hueso Esfenoides , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Péptido Natriurético Tipo-C/administración & dosificación , Péptido Natriurético Tipo-C/biosíntesis , Pubertad/metabolismo , Hueso Esfenoides/crecimiento & desarrollo , Hueso Esfenoides/metabolismo , Microtomografía por Rayos X
3.
Materials (Basel) ; 15(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35160948

RESUMEN

The application of periodontal tissue in regenerative medicine has gained increasing interest since it has a high potential to induce hard-tissue regeneration, and is easy to handle and graft to other areas of the oral cavity or tissues. Additionally, bone morphogenetic protein-2 (BMP-2) has a high potential to induce the differentiation of mesenchymal stem cells into osteogenic cells. We previously developed a system for a gene transfer to the periodontal tissues in animal models. In this study, we aimed to reveal the potential and efficiency of periodontal tissue as a biomaterial for hard-tissue regeneration following a bmp-2 gene transfer. A non-viral expression vector carrying bmp-2 was injected into the palate of the periodontal tissues of Wistar rats, followed by electroporation. The periodontal tissues were analyzed through bone morphometric analyses, including mineral apposition rate (MAR) determination and collagen micro-arrangement, which is a bone quality parameter, before and after a gene transfer. The MAR was significantly higher 3-6 d after the gene transfer than that before the gene transfer. Collagen orientation was normally maintained even after the bmp-2 gene transfer, suggesting that the bmp-2 gene transfer has no adverse effects on bone quality. Our results suggest that periodontal tissue electroporated with bmp-2 could be a novel biomaterial candidate for hard-tissue regeneration therapy.

4.
PLoS One ; 17(11): e0277140, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36355797

RESUMEN

Skeletal alterations in the head and neck region, such as midfacial hypoplasia, foramen magnum stenosis and spinal canal stenosis, are commonly observed in patients with mucopolysaccharidosis (MPS). However, enzyme replacement therapy (ERT), one of the major treatment approaches for MPS, shows limited efficacy for skeletal conditions. In this study, we analysed the craniofacial morphology of mice with MPS type VII, and investigated the underlying mechanisms promoting jaw deformities in these animals. Furthermore, we investigated the effects of C-type natriuretic peptide (CNP), a potent endochondral ossification promoter, on growth impairment of the craniofacial region in MPS VII mice when administered alone or in combination with ERT. MPS VII mice exhibited midfacial hypoplasia caused by impaired endochondral ossification, and histological analysis revealed increased number of swelling cells in the resting zone of the spheno-occipital synchondrosis (SOS), an important growth centre for craniomaxillofacial skeletogenesis. We crossed MPS VII mice with transgenic mice in which CNP was expressed in the liver under the control of the human serum amyloid-P component promoter, resulting in elevated levels of circulatory CNP. The maxillofacial morphological abnormalities associated with MPS VII were ameliorated by CNP expression, and further prevented by a combination of CNP and ERT. Histological analysis showed that ERT decreased the swelling cell number, and CNP treatment increased the width of the proliferative and hypertrophic zones of the SOS. Furthermore, the foramen magnum and spinal stenoses observed in MPS VII mice were significantly alleviated by CNP and ERT combination. These results demonstrate the therapeutic potential of CNP, which can be used to enhance ERT outcome for MPS VII-associated head and neck abnormalities.


Asunto(s)
Mucopolisacaridosis VII , Péptido Natriurético Tipo-C , Humanos , Ratones , Animales , Péptido Natriurético Tipo-C/farmacología , Constricción Patológica/complicaciones , Mucopolisacaridosis VII/complicaciones , Mucopolisacaridosis VII/tratamiento farmacológico , Osteogénesis , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA