Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35328724

RESUMEN

The success of dental implant treatment after tooth extraction is generally maximized by preserving the alveolar ridge using cell-free biomaterials. However, these treatments can be associated with inflammatory reactions, leading to additional bone volume loss hampering dental implant positioning. Our group developed a self-assembled bone-like substitute constituted of osteogenically induced human adipose-derived stromal/stem cells (hASCs). We hypothesized that a bone morphogenetic protein (BMP) supplementation could improve the in vitro osteogenic potential of the bone-like substitute, which would subsequently translate into enhanced alveolar bone healing after tooth extraction. ASCs displayed a better osteogenic response to BMP-9 than to BMP-2 in monolayer cell culture, as shown by higher transcript levels of the osteogenic markers RUNX2, osterix (OSX/SP7), and alkaline phosphatase after three and six days of treatment. Interestingly, BMP-9 treatment significantly increased OSX transcripts and alkaline phosphatase activity, as well as pro-angiogenic angiopoietin-1 gene expression, in engineered bone-like substitutes after 21 days of culture. Alveolar bone healing was investigated after molar extraction in nude rats. Microcomputed tomography and histological evaluations revealed similar, or even superior, global alveolar bone preservation when defects were filled with BMP-9-treated bone-like substitutes for ten weeks compared to a clinical-grade biomaterial, with adequate gingival re-epithelialization in the absence of resorption.


Asunto(s)
Sustitutos de Huesos , Implantes Dentales , Fosfatasa Alcalina/metabolismo , Proceso Alveolar , Animales , Materiales Biocompatibles , Factor 2 de Diferenciación de Crecimiento , Humanos , Ratas , Extracción Dental/efectos adversos , Microtomografía por Rayos X
2.
Sci Transl Med ; 16(755): eadk2936, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985852

RESUMEN

Tetralogy of Fallot is a congenital heart disease affecting newborns and involves stenosis of the right ventricular outflow tract (RVOT). Surgical correction often widens the RVOT with a transannular enlargement patch, but this causes issues including pulmonary valve insufficiency and progressive right ventricle failure. A monocusp valve can prevent pulmonary regurgitation; however, valve failure resulting from factors including leaflet design, morphology, and immune response can occur, ultimately resulting in pulmonary insufficiency. A multimodal platform to quantitatively evaluate the effect of shape, size, and material on clinical outcomes could optimize monocusp design. This study introduces a benchtop soft biorobotic heart model, a computational fluid model of the RVOT, and a monocusp valve made from an entirely biological cell-assembled extracellular matrix (CAM) to tackle the multifaceted issue of monocusp failure. The hydrodynamic and mechanical performance of RVOT repair strategies was assessed in biorobotic and computational platforms. The monocusp valve design was validated in vivo in ovine models through echocardiography, cardiac magnetic resonance, and catheterization. These models supported assessment of surgical feasibility, handling, suturability, and hemodynamic and mechanical monocusp capabilities. The CAM-based monocusp offered a competent pulmonary valve with regurgitation of 4.6 ± 0.9% and a transvalvular pressure gradient of 4.3 ± 1.4 millimeters of mercury after 7 days of implantation in sheep. The biorobotic heart model, in silico analysis, and in vivo RVOT modeling allowed iteration in monocusp design not now feasible in a clinical environment and will support future surgical testing of biomaterials for complex congenital heart malformations.


Asunto(s)
Materiales Biocompatibles , Simulación por Computador , Hemodinámica , Tetralogía de Fallot , Animales , Tetralogía de Fallot/cirugía , Ovinos , Materiales Biocompatibles/química , Modelos Animales de Enfermedad
3.
Sci Prog ; 106(4): 368504231219180, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38189326

RESUMEN

Most surgical procedures require using suture materials that are mechanically efficient and accepted by the patient's body. These sutures are essentially composed of synthetic polymers. However, once implanted in patients, they are recognized as foreign bodies and generate chronic inflammation. Thereafter, the patient's immune system will degrade, encapsulate, or even expel the materials. Our innovation, the Cell-Assembled extracellular Matrix (CAM), synthesized from mesenchymal cells, replicates native tissue environments and promotes integration, reducing complications. In a recent study, we introduced CAM-based biological sutures, demonstrating favorable mechanical properties and vascular surgery compatibility. Controlled culture duration tailors CAM for specific applications. Diverse CAM-based suture models were ex vivo tested in animal aorta anastomoses, confirming compatibility. In vivo carotid anastomoses in sheep validated the clinical significance of these innovative sutures. CAM sutures, derived from immunologically favorable allogeneic fibroblast cells, offer high biocompatibility and exhibit superior mechanical properties compared to synthetics by reducing permeability and increasing burst resistance. In vivo testing in sheep underscores clinical applicability, achieving hemostasis and immediate complication prevention. Importantly, CAM-based sutures are compatible with existing vascular surgery techniques, facilitating adoption by surgeons. In conclusion, our findings underscore the effectiveness and clinical significance of these innovative biological sutures.


Asunto(s)
Cirujanos , Suturas , Humanos , Animales , Ovinos , Matriz Extracelular
4.
Biofabrication ; 15(2)2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36848675

RESUMEN

Cardiovascular diseases are the leading cause of mortality in the world and encompass several important pathologies, including atherosclerosis. In the cases of severe vessel occlusion, surgical intervention using bypass grafts may be required. Synthetic vascular grafts provide poor patency for small-diameter applications (< 6 mm) but are widely used for hemodialysis access and, with success, larger vessel repairs. In very small vessels, such as coronary arteries, synthetics outcomes are unacceptable, leading to the exclusive use of autologous (native) vessels despite their limited availability and, sometimes, quality. Consequently, there is a clear clinical need for a small-diameter vascular graft that can provide outcomes similar to native vessels. Many tissue-engineering approaches have been developed to offer native-like tissues with the appropriate mechanical and biological properties in order to overcome the limitations of synthetic and autologous grafts. This review overviews current scaffold-based and scaffold-free approaches developed to biofabricate tissue-engineered vascular grafts (TEVGs) with an introduction to the biological textile approaches. Indeed, these assembly methods show a reduced production time compared to processes that require long bioreactor-based maturation steps. Another advantage of the textile-inspired approaches is that they can provide better directional and regional control of the TEVG mechanical properties.


Asunto(s)
Prótesis Vascular , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Andamios del Tejido
5.
Biofabrication ; 15(4)2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37595608

RESUMEN

Most vascular surgical repair procedures, such as vessel anastomoses, requires using suture materials that are mechanically efficient and accepted by the patient's body. These materials are essentially composed of synthetic polymers, such as polypropylene (ProleneTM) or polyglactin (VicrylTM). However, once implanted in patients, they are recognized as foreign bodies, and the patient's immune system will degrade, encapsulate, or even expel them. In this study, we developed innovative biological sutures for cardiovascular surgical repairs using Cell-Assembled extracellular Matrix (CAM)-based ribbons. After a mechanical characterization of the CAM-based ribbons, sutures were made with hydrated or twisted/dried ribbons with an initial width of 2 or 3 mm. These biological sutures were mechanically characterized and used to anastomoseex vivoanimal aortas. Data showed that our biological sutures display lower permeability and higher burst resistance than standard ProleneTMsuture material.In vivocarotid anastomoses realized in sheep demonstrated that our biological sutures are compatible with standard vascular surgery techniques. Echography confirmed the absence of thrombus and perfect homeostasis with no blood leakage was obtained within the first 10 min after closing the anastomosis. Finally, our findings confirmed the effectiveness and clinical relevance of these innovative biological sutures.


Asunto(s)
Polipropilenos , Suturas , Animales , Ovinos , Aorta , Relevancia Clínica , Matriz Extracelular
6.
Biomater Sci ; 10(14): 3935-3950, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35700514

RESUMEN

Several tissue engineering approaches are based on the ability of mesenchymal cells to endogenously synthesize an extracellular matrix (ECM) in vitro, which can be seen as a form of biomaterial. Accordingly, the inter-donor variability of cell-assembled extracellular matrix (CAM) production is a key parameter to understand in order to progress towards clinical applications, especially for autologous strategies. In this study, CAMs were produced, under good manufacturing process conditions, from skin fibroblasts of 21 patients as part of a clinical trial to evaluate a tissue-engineered vascular graft. The inter-donor variability of CAM strength, thickness, hydroxyproline, and glycosaminoglycan was substantial (coefficient of variability of 33%, 19%, 24%, and 19%, respectively), but a significant correlation was observed between all four properties (Pearson r: 0.43 to 0.70; p-value ≤ 0.05). A CAM matrisome analysis, performed by mass spectrometry, revealed the presence of 70 ECM-related proteins. Our study shows that the relative abundance of 16 proteins (15 non-collagenous) correlated with CAM thickness. These proteins also correlated with CAM hydroxyproline content, as well as 21 other proteins that included fibrillar collagens and non-collagenous proteins. However, data demonstrated that only the relative abundance of type I collagen subunit alpha-1 was correlated to CAM strength. This study is the most extensive evaluation of CAM inter-donor variability to date and will help tissue engineers working with this type of biomaterial to design strategies that take into account this variability, especially for autologous tissue manufacturing.


Asunto(s)
Matriz Extracelular , Fibroblastos , Materiales Biocompatibles/metabolismo , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/química , Humanos , Hidroxiprolina , Ingeniería de Tejidos/métodos
7.
Materials (Basel) ; 14(8)2021 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-33920607

RESUMEN

In vitro prevascularization has the potential to address the challenge of maintaining cell viability at the core of engineered constructs, such as bone substitutes, and to improve the survival of tissue grafts by allowing quicker anastomosis to the host microvasculature. The self-assembly approach of tissue engineering allows the production of biomimetic bone-like tissue constructs including extracellular matrix and living human adipose-derived stromal/stem cells (hASCs) induced towards osteogenic differentiation. We hypothesized that the addition of endothelial cells could improve osteogenesis and biomineralization during the production of self-assembled human bone-like tissues using hASCs. Additionally, we postulated that these prevascularized constructs would consequently improve graft survival and bone repair of rat calvarial bone defects. This study shows that a dense capillary network spontaneously formed in vitro during tissue biofabrication after two weeks of maturation. Despite reductions in osteocalcin levels and hydroxyapatite formation in vitro in prevascularized bone-like tissues (35 days of culture), in vivo imaging of prevascularized constructs showed an improvement in cell survival without impeding bone healing after 12 weeks of implantation in a calvarial bone defect model (immunocompromised male rats), compared to their stromal counterparts. Globally, these findings establish our ability to engineer prevascularized bone-like tissues with improved functional properties.

8.
Biomaterials ; 273: 120815, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33894404

RESUMEN

Cell-assembled extracellular matrix (CAM) has been used to produce vascular grafts. While these completely biological vascular grafts performed well in clinical trials, the in vivo remodeling and inflammatory response of this truly "bio" material has not yet been investigated. In this study, human CAM yarns were implanted subcutaneously in nude rats to investigate the innate immune response to this matrix. The impact of processing steps relevant to yarn manufacturing was evaluated (devitalization, decellularization, gamma sterilization, and twisting). We observed that yarns were still present after six months, and were integrated into a non-inflamed loose connective tissue. The CAM was repopulated by fibroblastic cells and blood vessels. While other yarns caused minor peripheral inflammation at an early stage (two weeks of implantation), gamma sterilization triggered a more intense host response dominated by the presence of M1 macrophages. The inflammatory response was resolved at six months. Yarn mechanical strength was decreased two weeks after implantation except for the more compact "twisted" yarn. While the strength of other yarns was stable after initial remodeling, the gamma-sterilized yarn continued to lose mechanical strength over time and was weaker than devitalized (control) yarns at six months. This is the first study to formally demonstrate that devitalized human CAM is very long-lived in vivo and does not trigger a degradative response, but rather is very slowly remodeled. This data supports a strategy to produce human textiles from CAM yarn for regenerative medicine applications where a scaffold with low inflammation and long-term mechanical properties are critical.


Asunto(s)
Matriz Extracelular , Textiles , Prótesis Vascular , Fibroblastos , Humanos
9.
J Tissue Eng ; 12: 2041731420978327, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33633827

RESUMEN

We have created entirely biological tissue-engineered vascular grafts (TEVGs) using sheets of cell-assembled extracellular matrix (CAM) produced by human fibroblasts in vitro. A large animal TEVG would allow long-term pre-clinical studies in a clinically relevant setting (graft size and allogeneic setting). Therefore, canine, porcine, ovine, and human skin fibroblasts were compared for their ability to form CAM sheets. Serum sourcing greatly influenced CAM production in a species-dependent manner. Ovine cells produced the most homogenous and strongest animal CAM sheets but remained ≈3-fold weaker than human sheets despite variations of serum, ascorbate, insulin, or growth factor supplementations. Key differences in cell growth dynamics, tissue development, and tissue architecture and composition were observed between human and ovine. This study demonstrates critical species-to-species differences in fibroblast behavior and how they pose a challenge when attempting to substitute animal cells for human cells during the development of tissue-engineered constructs that require long-term cultures.

10.
Biomed Mater ; 16(2): 025023, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33007772

RESUMEN

Severe skin burns are widely treated using split-thickness skin autografts. However, the accessibility of the donor site may be limited depending on the size of the injured surface. As an alternative to skin autografts, our laboratory is clinically investigating a model of human self-assembled skin substitute (SASS) with a standard size of 35 cm2. For the management of extensive skin wounds, multiple grafts are required to cover the entire wound bed. Even if SASSs could provide an adequate and efficient treatment, in some cases, the long-term follow-up of the skin graft site reveals the appearance of marks at the junction between SASSs. This study aims to produce a large-sized self-assembled skin substitute (L-SASS; 289 cm2) and evaluate its preclinical potential for skin wound coverage. The L-SASSs and SASSs shared similar contraction behavior on an agar surface, thickness, and epidermal differentiation in vitro. After grafting, similar histological results were obtained for skin substitutes produced with both methods. Hence, the self-assembly approach of tissue engineering is a scaffold-free method that allows the production of living skin substitutes in a large format.


Asunto(s)
Trasplante de Piel/instrumentación , Trasplante de Piel/métodos , Piel Artificial , Piel , Ingeniería de Tejidos/métodos , Cicatrización de Heridas , Adolescente , Adulto , Animales , Quemaduras/terapia , Diferenciación Celular , Niño , Epidermis/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Queratinocitos/citología , Ensayo de Materiales , Ratones , Ratones Desnudos
11.
Adv Healthc Mater ; 7(6): e1700919, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29280323

RESUMEN

Maxillofacial defects are complex lesions stemming from various etiologies: accidental, congenital, pathological, or surgical. A bone graft may be required when the normal regenerative capacity of the bone is exceeded or insufficient. Surgeons have many options available for bone grafting including the "gold standard" autologous bone graft. However, this approach is not without drawbacks such as the morbidity associated with harvesting bone from a donor site, pain, infection, or a poor quantity and quality of bone in some patient populations. This review discusses the various bone graft substitutes used for maxillofacial and craniofacial repair: allografts, xenografts, synthetic biomaterials, and tissue-engineered substitutes. A brief overview of bone tissue engineering evolution including the use of mesenchymal stem cells is exposed, highlighting the first clinical applications of adipose-derived stem/stromal cells in craniofacial reconstruction. The importance of prevascularization strategies for bone tissue engineering is also discussed, with an emphasis on recent work describing substitutes produced using cell sheet-based technologies, including the use of thermo-responsive plates and the self-assembly approach of tissue engineering. Indeed, considering their entirely cell-based design, these natural bone-like substitutes have the potential to closely mimic the osteogenicity, osteoconductivity, osteoinduction, and osseointegration properties of autogenous bone for maxillofacial and craniofacial reconstruction.


Asunto(s)
Materiales Biomiméticos , Sustitutos de Huesos , Oseointegración , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Materiales Biomiméticos/química , Materiales Biomiméticos/uso terapéutico , Sustitutos de Huesos/química , Sustitutos de Huesos/uso terapéutico , Humanos , Procedimientos Quirúrgicos Ortognáticos
12.
Ann Biomed Eng ; 45(2): 427-438, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27510917

RESUMEN

Recently, the tubular shape has been suggested as an effective geometry for tissue-engineered heart valves, allowing easy fabrication, fast implantation, and a minimal crimped footprint from a transcatheter delivery perspective. This simple design is well suited for the self-assembly method, with which the only support for the cells is the extracellular matrix they produce, allowing the tissue to be completely free from exogenous materials during its entire fabrication process. Tubular constructs were produced by rolling self-assembled human fibroblast sheets on plastic mandrels. After maturation, the tubes were transferred onto smaller diameter mandrels and allowed to contract freely. This precontraction phase thickened the tissue and prevented further contraction, while improving fusion between the self-assembled layers and aligning the cells circumferentially. When mounted in a pulsed-flow bioreactor, the valves showed good functionality with large leaflets coaptation and opening area. Although physiological aortic flow conditions were not reached, the leaflets could withstand a 1 Hz pulsed flow with a 300 mL/s peak flow rate and a 70 mmHg peak transvalvular pressure. This study shows that the self-assembly method, which has already proven its potential for the production of small diameter vascular grafts, could also be used to achieve functional tubular heart valves.


Asunto(s)
Reactores Biológicos , Fibroblastos/metabolismo , Prótesis Valvulares Cardíacas , Diseño de Prótesis , Flujo Pulsátil , Ingeniería de Tejidos , Células Cultivadas , Fibroblastos/citología , Humanos
13.
Adv Healthc Mater ; 6(4)2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28004524

RESUMEN

Achieving optimal bone defect repair is a clinical challenge driving intensive research in the field of bone tissue engineering. Many strategies focus on seeding graft materials with progenitor cells prior to in vivo implantation. Given the benefits of closely mimicking tissue structure and function with natural materials, the authors hypothesize that under specific culture conditions, human adipose-derived stem/stromal cells (hASCs) can solely be used to engineer human reconstructed osseous tissues (hROTs) by undergoing osteoblastic differentiation with concomitant extracellular matrix production and mineralization. Therefore, the authors are developing a self-assembly methodology allowing the production of such osseous tissues. Three-dimensional (3D) tissues reconstructed from osteogenically-induced cell sheets contain abundant collagen type I and are 2.7-fold less contractile compared to non-osteogenically induced tissues. In particular, hROT differentiation and mineralization is reflected by a greater amount of homogenously distributed alkaline phosphatase, as well as higher calcium-containing hydroxyapatite (P < 0.0001) and osteocalcin (P < 0.0001) levels compared to non-induced tissues. Taken together, these findings show that hASC-driven tissue engineering leads to hROTs that demonstrate structural and functional characteristics similar to native osseous tissue. These highly biomimetic human osseous tissues will advantageously serve as a platform for molecular studies as well as for future therapeutic in vivo translation.


Asunto(s)
Tejido Adiposo/metabolismo , Huesos/metabolismo , Diferenciación Celular , Osteoblastos/metabolismo , Células Madre/metabolismo , Ingeniería de Tejidos/métodos , Tejido Adiposo/citología , Antígenos de Diferenciación/biosíntesis , Huesos/citología , Femenino , Humanos , Osteoblastos/citología , Células Madre/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA