Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 319
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(3): 577-595, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33545034

RESUMEN

Biomolecules are in constant motion. To understand how they function, and why malfunctions can cause disease, it is necessary to describe their three-dimensional structures in terms of dynamic conformational ensembles. Here, we demonstrate how nuclear magnetic resonance (NMR) spectroscopy provides an essential, dynamic view of structural biology that captures biomolecular motions at atomic resolution. We focus on examples that emphasize the diversity of biomolecules and biochemical applications that are amenable to NMR, such as elucidating functional dynamics in large molecular machines, characterizing transient conformations implicated in the onset of disease, and obtaining atomic-level descriptions of intrinsically disordered regions that make weak interactions involved in liquid-liquid phase separation. Finally, we discuss the pivotal role that NMR has played in driving forward our understanding of the biomolecular dynamics-function paradigm.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Biomarcadores/metabolismo , Variaciones en el Número de Copia de ADN/genética , Humanos , Mutación/genética , Transcriptoma/genética
2.
Immunity ; 57(7): 1533-1548.e10, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38733997

RESUMEN

Several interleukin-1 (IL-1) family members, including IL-1ß and IL-18, require processing by inflammasome-associated caspases to unleash their activities. Here, we unveil, by cryoelectron microscopy (cryo-EM), two major conformations of the complex between caspase-1 and pro-IL-18. One conformation is similar to the complex of caspase-4 and pro-IL-18, with interactions at both the active site and an exosite (closed conformation), and the other only contains interactions at the active site (open conformation). Thus, pro-IL-18 recruitment and processing by caspase-1 is less dependent on the exosite than the active site, unlike caspase-4. Structure determination by nuclear magnetic resonance uncovers a compact fold of apo pro-IL-18, which is similar to caspase-1-bound pro-IL-18 but distinct from cleaved IL-18. Binding sites for IL-18 receptor and IL-18 binding protein are only formed upon conformational changes after pro-IL-18 cleavage. These studies show how pro-IL-18 is selected as a caspase-1 substrate, and why cleavage is necessary for its inflammatory activity.


Asunto(s)
Caspasa 1 , Microscopía por Crioelectrón , Interleucina-18 , Transducción de Señal , Interleucina-18/metabolismo , Caspasa 1/metabolismo , Humanos , Inflamasomas/metabolismo , Animales , Conformación Proteica , Unión Proteica , Sitios de Unión , Ratones , Receptores de Interleucina-18/metabolismo , Modelos Moleculares , Péptidos y Proteínas de Señalización Intercelular
3.
Mol Cell ; 84(3): 429-446.e17, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38215753

RESUMEN

Nucleosomes, the basic structural units of chromatin, hinder recruitment and activity of various DNA repair proteins, necessitating modifications that enhance DNA accessibility. Poly(ADP-ribosyl)ation (PARylation) of proteins near damage sites is an essential initiation step in several DNA-repair pathways; however, its effects on nucleosome structural dynamics and organization are unclear. Using NMR, cryoelectron microscopy (cryo-EM), and biochemical assays, we show that PARylation enhances motions of the histone H3 tail and DNA, leaving the configuration of the core intact while also stimulating nuclease digestion and ligation of nicked nucleosomal DNA by LIG3. PARylation disrupted interactions between nucleosomes, preventing self-association. Addition of LIG3 and XRCC1 to PARylated nucleosomes generated condensates that selectively partition DNA repair-associated proteins in a PAR- and phosphorylation-dependent manner in vitro. Our results establish that PARylation influences nucleosomes across different length scales, extending from the atom-level motions of histone tails to the mesoscale formation of condensates with selective compositions.


Asunto(s)
Nucleosomas , Poli ADP Ribosilación , Nucleosomas/genética , Poli ADP Ribosilación/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Microscopía por Crioelectrón , Condensados Biomoleculares , Reparación del ADN , Histonas/genética , Histonas/metabolismo , ADN/genética , ADN/metabolismo , Daño del ADN , Poli(ADP-Ribosa) Polimerasa-1/metabolismo
4.
Annu Rev Biochem ; 83: 291-315, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24905784

RESUMEN

Large macromolecular assemblies, so-called molecular machines, are critical to ensuring proper cellular function. Understanding how proper function is achieved at the atomic level is crucial to advancing multiple avenues of biomedical research. Biophysical studies often include X-ray diffraction and cryo-electron microscopy, providing detailed structural descriptions of these machines. However, their inherent flexibility has complicated an understanding of the relation between structure and function. Solution NMR spectroscopy is well suited to the study of such dynamic complexes, and continued developments have increased size boundaries; insights into function have been obtained for complexes with masses as large as 1 MDa. We highlight methyl-TROSY (transverse relaxation optimized spectroscopy) NMR, which enables the study of such large systems, and include examples of applications to several cellular machines. We show how this emerging technique contributes to an understanding of cellular function and the role of molecular plasticity in regulating an array of biochemical activities.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Sitio Alostérico , Animales , Proteínas Bacterianas/química , Dominio Catalítico , Exosomas , Proteína HMGN2/química , Proteínas de Choque Térmico/química , Humanos , Concentración de Iones de Hidrógeno , Sustancias Macromoleculares/química , Nucleosomas/química , Canales de Potasio/química , Complejo de la Endopetidasa Proteasomal/química , Conformación Proteica , Proteínas/química
5.
Nat Chem Biol ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503834

RESUMEN

Segments of proteins with high ß-strand propensity can self-associate to form amyloid fibrils implicated in many diseases. We describe a general approach to bind such segments in ß-strand and ß-hairpin conformations using de novo designed scaffolds that contain deep peptide-binding clefts. The designs bind their cognate peptides in vitro with nanomolar affinities. The crystal structure of a designed protein-peptide complex is close to the design model, and NMR characterization reveals how the peptide-binding cleft is protected in the apo state. We use the approach to design binders to the amyloid-forming proteins transthyretin, tau, serum amyloid A1 and amyloid ß1-42 (Aß42). The Aß binders block the assembly of Aß fibrils as effectively as the most potent of the clinically tested antibodies to date and protect cells from toxic Aß42 species.

6.
Proc Natl Acad Sci U S A ; 120(18): e2303149120, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37094170

RESUMEN

With the recent success in calculating protein structures from amino acid sequences using artificial intelligence-based algorithms, an important next step is to decipher how dynamics is encoded by the primary protein sequence so as to better predict function. Such dynamics information is critical for protein design, where strategies could then focus not only on sequences that fold into particular structures that perform a given task, but would also include low-lying excited protein states that could influence the function of the designed protein. Herein, we illustrate the importance of dynamics in modulating the function of C34, a designed α/ß protein that captures ß-strands of target ligands and is a member of a family of proteins designed to sequester ß-strands and ß hairpins of aggregation-prone molecules that lead to a variety of pathologies. Using a strategy to "see" regions of apo C34 that are invisible to NMR spectroscopy as a result of pervasive conformational exchange, as well as a mutagenesis approach whereby C34 molecules are stabilized into a single conformer, we determine the structures of the predominant conformations that are sampled by C34 and show that these attenuate the affinity for cognate peptide. Subsequently, the observed motion is exploited to develop an allosterically regulated peptide binder whose binding affinity can be controlled through the addition of a second molecule. Our study emphasizes the unique role that NMR can play in directing the design process and in the construction of new molecules with more complex functionality.


Asunto(s)
Inteligencia Artificial , Proteínas , Conformación Proteica , Secuencia de Aminoácidos , Péptidos , Ligandos
7.
Proc Natl Acad Sci U S A ; 120(15): e2301063120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37011222

RESUMEN

Epigenetic modifications of chromatin play a critical role in regulating the fidelity of the genetic code and in controlling the translation of genetic information into the protein components of the cell. One key posttranslational modification is acetylation of histone lysine residues. Molecular dynamics simulations, and to a smaller extent experiment, have established that lysine acetylation increases the dynamics of histone tails. However, a systematic, atomic resolution experimental investigation of how this epigenetic mark, focusing on one histone at a time, influences the structural dynamics of the nucleosome beyond the tails, and how this translates into accessibility of protein factors such as ligases and nucleases, has yet to be performed. Herein, using NMR spectroscopy of nucleosome core particles (NCPs), we evaluate the effects of acetylation of each histone on tail and core dynamics. We show that for histones H2B, H3, and H4, the histone core particle dynamics are little changed, even though the tails have increased amplitude motions. In contrast, significant increases to H2A dynamics are observed upon acetylation of this histone, with the docking domain and L1 loop particularly affected, correlating with increased susceptibility of NCPs to nuclease digestion and more robust ligation of nicked DNA. Dynamic light scattering experiments establish that acetylation decreases inter-NCP interactions in a histone-dependent manner and facilitates the development of a thermodynamic model for NCP stacking. Our data show that different acetylation patterns result in nuanced changes to NCP dynamics, modulating interactions with other protein factors, and ultimately controlling biological output.


Asunto(s)
Histonas , Nucleosomas , Histonas/metabolismo , Acetilación , Lisina/metabolismo , Procesamiento Proteico-Postraduccional
8.
Proc Natl Acad Sci U S A ; 120(51): e2310944120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38085782

RESUMEN

Mitochondrial apoptotic signaling cascades lead to the formation of the apoptosome, a 1.1-MDa heptameric protein scaffold that recruits and activates the caspase-9 protease. Once activated, caspase-9 cleaves and activates downstream effector caspases, triggering the onset of cell death through caspase-mediated proteolysis of cellular proteins. Failure to activate caspase-9 enables the evasion of programmed cell death, which occurs in various forms of cancer. Despite the critical apoptotic function of caspase-9, the structural mechanism by which it is activated on the apoptosome has remained elusive. Here, we used a combination of methyl-transverse relaxation-optimized NMR spectroscopy, protein engineering, and biochemical assays to study the activation of caspase-9 bound to the apoptosome. In the absence of peptide substrate, we observed that both caspase-9 and its isolated protease domain (PD) only very weakly dimerize with dissociation constants in the millimolar range. Methyl-NMR spectra of isotope-labeled caspase-9, within the 1.3-MDa native apoptosome complex or an engineered 480-kDa apoptosome mimic, reveal that the caspase-9 PD remains monomeric after recruitment to the scaffold. Binding to the apoptosome, therefore, organizes caspase-9 PDs so that they can rapidly and extensively dimerize only when substrate is present, providing an important layer in the regulation of caspase-9 activation. Our work highlights the unique role of NMR spectroscopy to structurally characterize protein domains that are flexibly tethered to large scaffolds, even in cases where the molecular targets are in excess of 1 MDa, as in the present example.


Asunto(s)
Apoptosomas , Caspasas , Caspasa 9/metabolismo , Apoptosomas/química , Caspasas/metabolismo , Apoptosis , Espectroscopía de Resonancia Magnética , Caspasa 3/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(17): e2203172119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35452308

RESUMEN

The human high-temperature requirement A2 (HtrA2) protein is a trimeric protease that cleaves misfolded proteins to protect cells from stresses caused by toxic, proteinaceous aggregates, and the aberrant function of HtrA2 is closely related to the onset of neurodegenerative disorders. Our methyl-transverse relaxation optimized spectroscopy (TROSY)­based NMR studies using small-peptide ligands have previously revealed a stepwise activation mechanism involving multiple distinct conformational states. However, very little is known about how HtrA2 binds to protein substrates and if the distinct conformational states observed in previous peptide studies might be involved in the processing of protein clients. Herein, we use solution-based NMR spectroscopy to investigate the interaction between the N-terminal Src homology 3 domain from downstream of receptor kinase (drk) with an added C-terminal HtrA2-binding motif (drkN SH3-PDZbm) that exhibits marginal folding stability and serves as a mimic of a physiological protein substrate. We show that drkN SH3-PDZbm binds to HtrA2 via a two-pronged interaction, involving both its C-terminal PDZ-domain binding motif and a central hydrophobic region, with binding occurring preferentially via an unfolded ensemble of substrate molecules. Multivalent interactions between several clients and a single HtrA2 trimer significantly stimulate the catalytic activity of HtrA2, suggesting that binding avidity plays an important role in regulating substrate processing. Our results provide a thermodynamic, kinetic, and structural description of the interaction of HtrA2 with protein substrates and highlight the importance of a trimeric architecture for function as a stress-protective protease that mitigates aggregation.


Asunto(s)
Proteínas Mitocondriales , Péptido Hidrolasas , Serina Peptidasa A2 que Requiere Temperaturas Altas/química , Humanos , Proteínas Mitocondriales/metabolismo , Serina Endopeptidasas/metabolismo , Temperatura
10.
Proc Natl Acad Sci U S A ; 119(36): e2210492119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36040869

RESUMEN

Electrostatic interactions and charge balance are important for the formation of biomolecular condensates involving proteins and nucleic acids. However, a detailed, atomistic picture of the charge distribution around proteins during the phase-separation process is lacking. Here, we use solution NMR spectroscopy to measure residue-specific near-surface electrostatic potentials (ϕENS) of the positively charged carboxyl-terminal intrinsically disordered 103 residues of CAPRIN1, an RNA-binding protein localized to membraneless organelles playing an important role in messenger RNA (mRNA) storage and translation. Measured ϕENS values have been mapped along the adenosine triphosphate (ATP)-induced phase-separation trajectory. In the absence of ATP, ϕENS values for the mixed state of CAPRIN1 are positive and large and progressively decrease as ATP is added. This is coupled to increasing interchain interactions, particularly between aromatic-rich and arginine-rich regions of the protein. Upon phase separation, CAPRIN1 molecules in the condensed phase are neutral (ϕENS [Formula: see text] 0 mV), with ∼five molecules of ATP associated with each CAPRIN1 chain. Increasing the ATP concentration further inverts the CAPRIN1 electrostatic potential, so that molecules become negatively charged, especially in aromatic-rich regions, leading to re-entrance into a mixed phase. Our results collectively show that a subtle balance between electrostatic repulsion and interchain attractive interactions regulates CAPRIN1 phase separation and provides insight into how nucleotides, such as ATP, can induce formation of and subsequently dissolve protein condensates.


Asunto(s)
Fenómenos Bioquímicos , Proteínas Intrínsecamente Desordenadas , Transición de Fase , Proteínas de Unión al ARN , Electricidad Estática , Adenosina Trifosfato/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Resonancia Magnética Nuclear Biomolecular , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Propiedades de Superficie
11.
Biochemistry ; 63(7): 880-892, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38501608

RESUMEN

Ras-related nuclear protein (Ran) is a member of the Ras superfamily of small guanosine triphosphatases (GTPases) and a regulator of multiple cellular processes. In healthy cells, the GTP-bound form of Ran is concentrated at chromatin, creating a Ran•GTP gradient that provides the driving force for nucleocytoplasmic transport, mitotic spindle assembly, and nuclear envelope formation. The Ran•GTP gradient is maintained by the regulator of chromatin condensation 1 (RCC1), a guanine nucleotide exchange factor that accelerates GDP/GTP exchange in Ran. RCC1 interacts with nucleosomes, which are the fundamental repeating units of eukaryotic chromatin. Here, we present a cryo-EM analysis of a trimeric complex composed of the nucleosome core particle (NCP), RCC1, and Ran. While the contacts between RCC1 and Ran in the complex are preserved compared with a previously determined structure of RCC1-Ran, our study reveals that RCC1 and Ran interact dynamically with the NCP and undergo rocking motions on the nucleosome surface. Furthermore, the switch 1 region of Ran, which plays an important role in mediating conformational changes associated with the substitution of GDP and GTP nucleotides in Ras family members, appears to undergo disorder-order transitions and forms transient contacts with the C-terminal helix of histone H2B. Nucleotide exchange assays performed in the presence and absence of NCPs are not consistent with an active role for nucleosomes in nucleotide exchange, at least in vitro. Instead, the nucleosome stabilizes RCC1 and serves as a hub that concentrates RCC1 and Ran to promote efficient Ran•GDP to Ran•GTP conversion.


Asunto(s)
Cromatina , Nucleosomas , Proteína de Unión al GTP ran , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Microscopía por Crioelectrón , Guanosina Trifosfato/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleosomas/química , Nucleosomas/metabolismo , Nucleótidos/metabolismo , Proteína de Unión al GTP ran/metabolismo , Humanos , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo
12.
J Biol Chem ; 299(1): 102776, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36496075

RESUMEN

Biomolecular condensates concentrate proteins, nucleic acids, and small molecules and play an essential role in many biological processes. Their formation is tuned by a balance between energetically favorable and unfavorable contacts, with charge-charge interactions playing a central role in some systems. The positively charged intrinsically disordered carboxy-terminal region of the RNA-binding protein CAPRIN1 is one such example, phase separating upon addition of negatively charged ATP or high concentrations of sodium chloride (NaCl). Using solution NMR spectroscopy, we measured residue-specific near-surface electrostatic potentials (ϕENS) of CAPRIN1 along its NaCl-induced phase separation trajectory to compare with those obtained using ATP. In both cases, electrostatic shielding decreases ϕENS values, yet surface potentials of CAPRIN1 in the two condensates can be different, depending on the amount of NaCl or ATP added. Our results establish that even small differences in ϕENS can significantly affect the level of protein enrichment and the mechanical properties of the condensed phase, leading, potentially, to the regulation of biological processes.


Asunto(s)
Hidrodinámica , Proteínas Intrínsecamente Desordenadas , Proteínas de Unión al ARN , Adenosina Trifosfato , Proteínas Intrínsecamente Desordenadas/química , Proteínas de Unión al ARN/química , Cloruro de Sodio/metabolismo , Electricidad Estática
13.
J Am Chem Soc ; 146(12): 8242-8259, 2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38477967

RESUMEN

The DegP protease-chaperone operates within the periplasm of Gram-negative bacteria, where it assists in the regulation of protein homeostasis, promotes virulence, and is essential to survival under stress. To carry out these tasks, DegP forms a network of preorganized apo oligomers that facilitate the capture of substrates within distributions of cage-like complexes which expand to encapsulate clients of various sizes. Although the architectures of DegP cage complexes are well understood, little is known about the structures, dynamics, and interactions of client proteins within DegP cages and the relationship between client structural dynamics and function. Here, we probe host-guest interactions within a 600 kDa DegP cage complex throughout the DegP activation cycle using a model α-helical client protein through a combination of hydrodynamics measurements, methyl-transverse relaxation optimized spectroscopy-based solution nuclear magnetic resonance studies, and proteolytic activity assays. We find that in the presence of the client, DegP cages assemble cooperatively with few intermediates. Our data further show that the N-terminal half of the bound client, which projects into the interior of the cages, is predominantly unfolded and flexible, and exchanges between multiple conformational states over a wide range of time scales. Finally, we show that a concerted structural transition of the protease domains of DegP occurs upon client engagement, leading to activation. Together, our findings support a model of DegP as a highly cooperative and dynamic molecular machine that stabilizes unfolded states of clients, primarily via interactions with their C-termini, giving rise to efficient cleavage.


Asunto(s)
Proteínas de Choque Térmico , Hidrodinámica , Proteínas Periplasmáticas , Serina Endopeptidasas , Humanos , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Espectroscopía de Resonancia Magnética
14.
J Am Chem Soc ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028837

RESUMEN

NMR spectroscopy is an important tool for the measurement of the electrostatic properties of biomolecules. To this point, paramagnetic relaxation enhancements (PREs) of 1H nuclei arising from nitroxide cosolutes in biomolecular solutions have been used to measure effective near-surface electrostatic potentials (ϕENS) of proteins and nucleic acids. Here, we present a gadolinium (Gd)-based NMR method, exploiting Gd chelates with different net charges, for measuring ϕENS values and demonstrate its utility through applications to a number of biomolecular systems. The use of Gd-based cosolutes offers several advantages over nitroxides for ϕENS measurements. First, unlike nitroxide compounds, Gd chelates enable electrostatic potential measurements on oxidation-sensitive proteins that require reducing agents. Second, the large electron spin quantum number of Gd (7/2) results in notably larger PREs for Gd chelates when used at the same concentrations as nitroxide radicals. Thus, it is possible to measure ϕENS values exclusively from + and - charged compounds even for highly charged biomolecules, avoiding the use of neutral cosolutes that, as we further establish here, limits the accuracy of the measured electrostatic potentials. In addition, the smaller concentrations of cosolutes required minimize potential binding to sites on macromolecules. Fourth, the closer proximity of the paramagnetic center and charged groups within Gd chelates, in comparison to the corresponding nitroxide compounds, enables more accurate predictions of ϕENS potentials for cross-validation of the experimental results. The Gd-based method described here, thus, broadens the applicability of studies of biomolecular electrostatics using solution NMR spectroscopy.

15.
J Am Chem Soc ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38991204

RESUMEN

Biomolecular condensates can influence cellular function in a number of ways, including by changing the structural dynamics and conformational equilibria of the molecules partitioned within them. Here we use methyl transverse relaxation optimized spectroscopy (methyl-TROSY) NMR in conjunction with 2'-O-methyl labeling of RNA to characterize the thermodynamics and kinetics of RNA-RNA base pairing in condensates formed by the C-terminal intrinsically disordered region of CAPRIN1, an RNA-binding protein involved in RNA transport, translation, and stability. CAPRIN1 condensates destabilize RNA-RNA base pairing, resulting from a ∼270-fold decrease and a concomitant ∼15-fold increase in the on- and off-rates for duplex formation, respectively. The ∼30-fold slower diffusion of RNA single strands within the condensed phase partially accounts for the reduced on-rate, but the further ∼9-fold reduction likely reflects shedding of CAPRIN1 chains that are interacting with the RNA prior to hybridization. Our study emphasizes the important role of protein solvation in modulating nucleic acid recognition processes inside condensates.

16.
J Biomol NMR ; 78(1): 39-60, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38169015

RESUMEN

Although NMR spectroscopy is routinely used to study the conformational dynamics of biomolecules, robust analyses of the data are challenged in cases where exchange is more complex than two-state, such as when a 'visible' major conformer exchanges with two 'invisible' minor states on the millisecond timescale. It is becoming increasingly clear that chemical exchange saturation transfer (CEST) NMR experiments that were initially developed to study systems undergoing slow interconversion are also sensitive to intermediate-fast timescale biomolecular conformational exchange. Here we investigate the utility of the amide 15N CEST experiment to characterise protein three-state exchange occurring on the millisecond timescale by studying the interconversion between the folded (F) state of the FF domain from human HYPA/FBP11 (WT FF) and two of its folding intermediates I1 and I2. Although 15N CPMG experiments are consistent with the F state interconverting with a single minor state on the millisecond timescale, 15N CEST data clearly establish an exchange process between F and a pair of minor states. A unique three-state exchange model cannot be obtained by analysis of 15N CEST data recorded at a single temperature. However, including the relative sign of the difference in the chemical shifts of the two minor states based on a simple two-state analysis of CEST data recorded at multiple temperatures, results in a robust three-state model in which the F, I1 and I2 states interconvert with each other on the millisecond timescale ( k e x , F I 1 ~ 550 s-1, k e x , F I 2 ~ 1200 s-1, k e x , I 1 I 2 ~ 5000 s-1), with I1 and I2 sparsely populated at ~ 0.15% and ~ 0.35%, respectively, at 15 °C. A computationally demanding grid-search of exchange parameter space is not required to extract the best-fit exchange parameters from the CEST data. The utility of the CEST experiment, thus, extends well beyond studies of conformers in slow exchange on the NMR chemical shift timescale, to include systems with interconversion rates on the order of thousands/second.


Asunto(s)
Amidas , Humanos , Resonancia Magnética Nuclear Biomolecular/métodos , Conformación Proteica , Espectroscopía de Resonancia Magnética , Amidas/química , Temperatura
17.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34893543

RESUMEN

Developments in solution NMR spectroscopy have significantly impacted the biological questions that can now be addressed by this methodology. By means of illustration, we present here a perspective focusing on studies of a number of molecular machines that are critical for cellular homeostasis. The role of NMR in elucidating the structural dynamics of these important molecules is emphasized, focusing specifically on intersubunit allosteric communication in homo-oligomers. In many biophysical studies of oligomers, allostery is inferred by showing that models specifically including intersubunit communication best fit the data of interest. Ideally, however, experimental studies focusing on one subunit of a multisubunit system would be performed as an important complement to the more traditional bulk measurements in which signals from all components are measured simultaneously. Using an approach whereby asymmetric molecules are prepared in concert with NMR experiments focusing on the structural dynamics of individual protomers, we present examples of how intersubunit allostery can be directly observed in high-molecular-weight protein systems. These examples highlight some of the unique roles of solution NMR spectroscopy in studies of complex biomolecules and emphasize the important synergy between NMR and other atomic resolution biophysical methods.

18.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34446566

RESUMEN

The human high-temperature requirement A2 (HtrA2) mitochondrial protease is critical for cellular proteostasis, with mutations in this enzyme closely associated with the onset of neurodegenerative disorders. HtrA2 forms a homotrimeric structure, with each subunit composed of protease and PDZ (PSD-95, DLG, ZO-1) domains. Although we had previously shown that successive ligand binding occurs with increasing affinity, and it has been suggested that allostery plays a role in regulating catalysis, the molecular details of how this occurs have not been established. Here, we use cysteine-based chemistry to generate subunits in different conformational states along with a protomer mixing strategy, biochemical assays, and methyl-transverse relaxation optimized spectroscopy-based NMR studies to understand the role of interprotomer allostery in regulating HtrA2 function. We show that substrate binding to a PDZ domain of one protomer increases millisecond-to-microsecond timescale dynamics in neighboring subunits that prime them for binding substrate molecules. Only when all three PDZ-binding sites are substrate bound can the enzyme transition into an active conformation that involves significant structural rearrangements of the protease domains. Our results thus explain why when one (or more) of the protomers is fixed in a ligand-binding-incompetent conformation or contains the inactivating S276C mutation that is causative for a neurodegenerative phenotype in mouse models of Parkinson's disease, transition to an active state cannot be formed. In this manner, wild-type HtrA2 is only active when substrate concentrations are high and therefore toxic and unregulated proteolysis of nonsubstrate proteins can be suppressed.


Asunto(s)
Serina Peptidasa A2 que Requiere Temperaturas Altas/metabolismo , Mitocondrias/metabolismo , Mutación , Dominios PDZ , Enfermedad de Parkinson/patología , Regiones Promotoras Genéticas , Animales , Dominio Catalítico , Serina Peptidasa A2 que Requiere Temperaturas Altas/química , Serina Peptidasa A2 que Requiere Temperaturas Altas/genética , Humanos , Ratones , Mitocondrias/genética , Modelos Moleculares , Enfermedad de Parkinson/etiología , Conformación Proteica , Proteolisis , Relación Estructura-Actividad
19.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34764225

RESUMEN

Conformational dynamics play critical roles in protein folding, misfolding, function, misfunction, and aggregation. While detecting and studying the different conformational states populated by protein molecules on their free energy surfaces (FESs) remain a challenge, NMR spectroscopy has emerged as an invaluable experimental tool to explore the FES of a protein, as conformational dynamics can be probed at atomic resolution over a wide range of timescales. Here, we use chemical exchange saturation transfer (CEST) to detect "invisible" minor states on the energy landscape of the A39G mutant FF domain that exhibited "two-state" folding kinetics in traditional experiments. Although CEST has mostly been limited to studies of processes with rates between ∼5 to 300 s-1 involving sparse states with populations as low as ∼1%, we show that the line broadening that is often associated with minor state dips in CEST profiles can be exploited to inform on additional conformers, with lifetimes an order of magnitude shorter and populations close to 10-fold smaller than what typically is characterized. Our analysis of CEST profiles that exploits the minor state linewidths of the 71-residue A39G FF domain establishes a folding mechanism that can be described in terms of a four-state exchange process between interconverting states spanning over two orders of magnitude in timescale from ∼100 to ∼15,000 µs. A similar folding scheme is established for the wild-type domain as well. The study shows that the folding of this small domain proceeds through a pair of sparse, partially structured intermediates via two discrete pathways on a volcano-shaped FES.


Asunto(s)
Proteínas/metabolismo , Entropía , Cinética , Resonancia Magnética Nuclear Biomolecular/métodos , Dominios Proteicos/fisiología , Pliegue de Proteína
20.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33692127

RESUMEN

Human High temperature requirement A2 (HtrA2) is a mitochondrial protease chaperone that plays an important role in cellular proteostasis and in regulating cell-signaling events, with aberrant HtrA2 function leading to neurodegeneration and parkinsonian phenotypes. Structural studies of the enzyme have established a trimeric architecture, comprising three identical protomers in which the active sites of each protease domain are sequestered to form a catalytically inactive complex. The mechanism by which enzyme function is regulated is not well understood. Using methyl transverse relaxation optimized spectroscopy (TROSY)-based solution NMR in concert with biochemical assays, a functional HtrA2 oligomerization/binding cycle has been established. In the absence of substrates, HtrA2 exchanges between a heretofore unobserved hexameric conformation and the canonical trimeric structure, with the hexamer showing much weaker affinity toward substrates. Both structures are substrate inaccessible, explaining their low basal activity in the absence of the binding of activator peptide. The binding of the activator peptide to each of the protomers of the trimer occurs with positive cooperativity and induces intrasubunit domain reorientations to expose the catalytic center, leading to increased proteolytic activity. Our data paint a picture of HtrA2 as a finely tuned, stress-protective enzyme whose activity can be modulated both by oligomerization and domain reorientation, with basal levels of catalysis kept low to avoid proteolysis of nontarget proteins.


Asunto(s)
Serina Peptidasa A2 que Requiere Temperaturas Altas/química , Proteínas Mitocondriales/química , Sitios de Unión , Dominio Catalítico , Serina Peptidasa A2 que Requiere Temperaturas Altas/metabolismo , Humanos , Cinética , Espectroscopía de Resonancia Magnética , Proteínas Mitocondriales/metabolismo , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Proteolisis , Relación Estructura-Actividad , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA