Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Biochem Funct ; 42(5): e4094, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39001564

RESUMEN

Nuclear factor-erythroid-2-related factor-2 (NRF-2) is a cellular resistance protein to oxidants. We investigated the effect of exogenous all-trans retinoic acid (ATRA) on the antioxidant system and NRF-2 in mice kidneys under hyperoxia-induced oxidative stress. Mice were divided into four groups. Daily, two groups were given either peanut-oil/dimethyl sulfoxide (PoDMSO) mixture or 50 mg/kg ATRA. Oxidative stress was induced by hyperoxia in the remaining groups. They were treated with PoDMSO or ATRA as described above, following hyperoxia (100% oxygen) for 72 h. NRF-2 and active-caspase-3 levels, lipid peroxidation (LPO), activities of antioxidant enzymes, xanthine oxidase (XO), paraoxonase1 (PON1), lactate dehydrogenase (LDH), tissue factor (TF), and prolidase were assayed in kidneys. Hyperoxia causes kidney damage induced by oxidative stress and apoptosis. Increased LPO, LDH, TF, and XO activities and decreased PON1 and prolidase activities contributed to kidney damage in hyperoxic mice. After hyperoxia, increases in the activities of antioxidant enzymes and NRF-2 level could not prevent this damage. ATRA attenuated damage via its oxidative stress-lowering effect. The decreased LDH and TF activities increased PON1 and prolidase activities, and normalized antioxidant statuses are indicators of the positive effects of ATRA. We recommend that ATRA can be used as a renoprotective agent against oxidative stress induced-kidney damage.


Asunto(s)
Apoptosis , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Tretinoina , Animales , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Ratones , Tretinoina/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Masculino , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Hiperoxia/metabolismo , Hiperoxia/tratamiento farmacológico , Antioxidantes/farmacología , Peroxidación de Lípido/efectos de los fármacos
2.
Front Immunol ; 15: 1324552, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38524119

RESUMEN

Air pollution plays an important role in the mortality and morbidity of chronic airway diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Particulate matter (PM) is a significant fraction of air pollutants, and studies have demonstrated that it can cause airway inflammation and injury. The airway epithelium forms the first barrier of defense against inhaled toxicants, such as PM. Airway epithelial cells clear airways from inhaled irritants and orchestrate the inflammatory response of airways to these irritants by secreting various lipid mediators, growth factors, chemokines, and cytokines. Studies suggest that PM plays an important role in the pathogenesis of chronic airway diseases by impairing mucociliary function, deteriorating epithelial barrier integrity, and inducing the production of inflammatory mediators while modulating the proliferation and death of airway epithelial cells. Furthermore, PM can modulate epithelial plasticity and airway remodeling, which play central roles in asthma and COPD. This review focuses on the effects of PM on airway injury and epithelial plasticity, and the underlying mechanisms involving mucociliary activity, epithelial barrier function, airway inflammation, epithelial-mesenchymal transition, mesenchymal-epithelial transition, and airway remodeling.


Asunto(s)
Contaminación del Aire , Asma , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Remodelación de las Vías Aéreas (Respiratorias) , Irritantes , Contaminación del Aire/efectos adversos , Asma/etiología , Enfermedad Pulmonar Obstructiva Crónica/etiología , Material Particulado/efectos adversos , Inflamación/patología , Polvo
3.
Thorac Res Pract ; 25(2): 89-98, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38454205

RESUMEN

Earthquakes are catastrophic natural disasters that cause extensive damage to infrastructure and disrupt the lives of millions worldwide. Beyond the immediate physical and psychological damage caused by earthquakes, these events can significantly impact respiratory health. The inhalation of dust, smoke, particulates, toxic gases, and asbestos exposure can lead to various respiratory health pathologies. These include respiratory infections, exacerbations of pre-existing respiratory diseases, chest traumas, and pulmonary and venous thromboembolism. Longitudinal studies are necessary to assess the long-term respiratory health effects in affected populations. By addressing these knowledge gaps, future mitigation strategies and preparedness measures can be developed to minimize the respiratory health impacts of earthquakes and improve the well-being of affected communities. Robust building infrastructure and comprehensive earthquake preparedness are emerging as the most important determinants for not only mitigating building collapse but also significantly reducing the potential health impacts that follow. This comprehensive review aims to provide a systematic overview of the lung health impacts of earthquakes. It highlights the need for further research to identify specific pollutants, air contaminants, and environmental factors contributing to respiratory health issues following earthquakes.

4.
Pulmonology ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755091

RESUMEN

Air pollution is a major global environment and health concern. Recent studies have suggested an association between air pollution and COVID-19 mortality and morbidity. In this context, a close association between increased levels of air pollutants such as particulate matter ≤2.5 to 10 µM, ozone and nitrogen dioxide and SARS-CoV-2 infection, hospital admissions and mortality due to COVID 19 has been reported. Air pollutants can make individuals more susceptible to SARS-CoV-2 infection by inducing the expression of proteins such as angiotensin converting enzyme (ACE)2 and transmembrane protease, serine 2 (TMPRSS2) that are required for viral entry into the host cell, while causing impairment in the host defence system by damaging the epithelial barrier, muco-ciliary clearance, inhibiting the antiviral response and causing immune dysregulation. The aim of this review is to report the epidemiological evidence on impact of air pollutants on COVID 19 in an up-to-date manner, as well as to provide insights on in vivo and in vitro mechanisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA