Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Dev Biol ; 479: 37-50, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34303700

RESUMEN

Ventral spinal cord progenitor cells, which express the basic helix loop helix transcription factor Olig2, sequentially produce motor neurons and oligodendrocyte precursor cells (OPCs). Following specification some OPCs differentiate as myelinating oligodendrocytes while others persist as OPCs. Though a considerable amount of work has described the molecular profiles that define motor neurons, OPCs, and oligodendrocytes, less is known about the progenitors that produce them. To identify the developmental origins and transcriptional profiles of motor neurons and OPCs, we performed single-cell RNA sequencing on isolated pMN cells from embryonic zebrafish trunk tissue at stages that encompassed motor neurogenesis, OPC specification, and initiation of oligodendrocyte differentiation. Downstream analyses revealed two distinct pMN progenitor populations: one that appears to produce neurons and one that appears to produce OPCs. This latter population, called Pre-OPCs, is marked by expression of GS Homeobox 2 (gsx2), a gene that encodes a homeobox transcription factor. Using fluorescent in situ hybridizations, we identified gsx2-expressing Pre-OPCs in the spinal cord prior to expression of canonical OPC marker genes. Our data therefore reveal heterogeneous gene expression profiles among pMN progenitors, supporting prior fate mapping evidence.


Asunto(s)
Diferenciación Celular/fisiología , Células-Madre Neurales/citología , Médula Espinal/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Linaje de la Célula , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Hedgehog/metabolismo , Neuronas Motoras/citología , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Oligodendroglía/citología , Análisis de la Célula Individual/métodos , Análisis Espacio-Temporal , Factores de Transcripción/metabolismo , Transcriptoma/genética , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
2.
Dev Biol ; 444(2): 93-106, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30347186

RESUMEN

During development of the central nervous system oligodendrocyte precursor cells (OPCs) give rise to both myelinating oligodendrocytes and NG2 glia, which are the most proliferative cells in the adult mammalian brain. NG2 glia retain characteristics of OPCs, and some NG2 glia produce oligodendrocytes, but many others persist throughout adulthood. Why some OPCs differentiate as oligodendrocytes during development whereas others persist as OPCs and acquire characteristics of NG2 glia is not known. Using zebrafish spinal cord as a model, we found that OPCs that differentiate rapidly as oligodendrocytes and others that remain as OPCs arise in sequential waves from distinct neural progenitors. Additionally, oligodendrocyte and persistent OPC fates are specified during a defined critical period by small differences in Shh signaling and Notch activity, which modulates Shh signaling response. Thus, our data indicate that OPCs fated to produce oligodendrocytes or remain as OPCs during development are specified as distinct cell types, raising the possibility that the myelinating potential of OPCs is set by graded Shh signaling activity.


Asunto(s)
Proteínas Hedgehog/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Receptores Notch/metabolismo , Animales , Encéfalo/metabolismo , Diferenciación Celular/fisiología , Linaje de la Célula , Proliferación Celular , Sistema Nervioso Central/metabolismo , Neuroglía/metabolismo , Células Precursoras de Oligodendrocitos/fisiología , Oligodendroglía/fisiología , Transducción de Señal/fisiología , Médula Espinal/metabolismo , Células Madre/metabolismo , Pez Cebra/embriología , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
3.
J Neurosci ; 35(44): 14861-71, 2015 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-26538655

RESUMEN

An important characteristic of vertebrate CNS development is the formation of specific amounts of insulating myelin membrane on axons. CNS myelin is produced by oligodendrocytes, glial cells that extend multiple membrane processes to wrap multiple axons. Recent data have shown that signaling mediated by the mechanistic target of rapamycin (mTOR) serine/threonine kinase promotes myelination, but factors that regulate mTOR activity for myelination remain poorly defined. Through a forward genetic screen in zebrafish, we discovered that mutation of fbxw7, which encodes the substrate recognition subunit of a SCF ubiquitin ligase that targets proteins for degradation, causes hypermyelination. Among known Fbxw7 targets is mTOR. Here, we provide evidence that mTOR signaling activity is elevated in oligodendrocyte lineage cells of fbxw7 mutant zebrafish larvae. Both genetic and pharmacological inhibition of mTOR function suppressed the excess myelin gene expression resulting from loss of Fbxw7 function, indicating that mTOR is a functionally relevant target of Fbxw7 in oligodendrocytes. fbxw7 mutant larvae wrapped axons with more myelin membrane than wild-type larvae and oligodendrocyte-specific expression of dominant-negative Fbxw7 produced longer myelin sheaths. Our data indicate that Fbxw7 limits the myelin-promoting activity of mTOR, thereby serving as an important brake on developmental myelination. SIGNIFICANCE STATEMENT: Myelin, a specialized, proteolipid-rich membrane that ensheaths and insulates nerve fibers, facilitates the rapid conduction of electrical impulses over long distances. Abnormalities in myelin formation or maintenance result in intellectual and motor disabilities, raising a need for therapeutic strategies designed to promote myelination. The mTOR kinase is a powerful driver of myelination, but the mechanisms that regulate mTOR function in myelination are not well understood. Our studies reveal that Fbxw7, a subunit of a ubiquitin ligase that targets other proteins for degradation, acts as a brake on myelination by limiting mTOR function. These findings suggest that Fbxw7 helps tune the amount of myelin produced during development and raise the possibility that Fbxw7 could be a target of myelin-promoting therapies.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas F-Box/fisiología , Vaina de Mielina/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/biosíntesis , Ubiquitina-Proteína Ligasas/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Proteína 7 que Contiene Repeticiones F-Box-WD , Femenino , Vaina de Mielina/ultraestructura , Fibras Nerviosas Mielínicas/metabolismo , Fibras Nerviosas Mielínicas/ultraestructura , Embarazo , Complejos de Ubiquitina-Proteína Ligasa , Pez Cebra
4.
Dev Dyn ; 244(2): 134-45, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25488883

RESUMEN

BACKGROUND: Cytoplasmic dynein provides the main motor force for minus-end-directed transport of cargo on microtubules. Within the vertebrate central nervous system (CNS), proliferation, neuronal migration, and retrograde axon transport are among the cellular functions known to require dynein. Accordingly, mutations of DYNC1H1, which encodes the heavy chain subunit of cytoplasmic dynein, have been linked to developmental brain malformations and axonal pathologies. Oligodendrocytes, the myelinating glial cell type of the CNS, migrate from their origins to their target axons and subsequently extend multiple long processes that ensheath axons with specialized insulating membrane. These processes are filled with microtubules, which facilitate molecular transport of myelin components. However, whether oligodendrocytes require cytoplasmic dynein to ensheath axons with myelin is not known. RESULTS: We identified a mutation of zebrafish dync1h1 in a forward genetic screen that caused a deficit of oligodendrocytes. Using in vivo imaging and gene expression analyses, we additionally found evidence that dync1h1 promotes axon ensheathment and myelin gene expression. CONCLUSIONS: In addition to its well known roles in axon transport and neuronal migration, cytoplasmic dynein contributes to neural development by promoting myelination.


Asunto(s)
Transporte Axonal/fisiología , Axones/metabolismo , Encéfalo/embriología , Dineínas Citoplasmáticas/metabolismo , Vaina de Mielina/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Encéfalo/citología , Dineínas Citoplasmáticas/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Mutación , Vaina de Mielina/genética , Oligodendroglía/citología , Oligodendroglía/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética
5.
Genetics ; 218(4)2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34057474

RESUMEN

The axis of the vertebrate neural tube is patterned, in part, by a ventral to dorsal gradient of Shh signaling. In the ventral spinal cord, Shh induces concentration-dependent expression of transcription factors, subdividing neural progenitors into distinct domains that subsequently produce distinct neuronal and glial subtypes. In particular, progenitors of the pMN domain express the bHLH transcription factor Olig2 and produce motor neurons followed by oligodendrocytes, the myelinating glial cell type of the central nervous system. In addition to its role in patterning ventral progenitors, Shh signaling must be maintained through development to specify pMN progenitors for oligodendrocyte fate. Using a forward genetic screen in zebrafish for mutations that disrupt the development of oligodendrocytes, we identified a new mutant allele of boc, which encodes a type I transmembrane protein that functions as a coreceptor for Shh. Embryos homozygous for the bocco25 allele, which creates a missense mutation in a Fibronectin type III domain that binds Shh, have normally patterned spinal cords but fail to maintain pMN progenitors, resulting in a deficit of oligodendrocytes. Using a sensitive fluorescent detection method for in situ RNA hybridization, we found that spinal cord cells express boc in a graded fashion that is inverse to the gradient of Shh signaling activity and that boc function is necessary to maintain pMN progenitors by shaping the Shh signaling gradient.


Asunto(s)
Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neurogénesis , Oligodendroglía/metabolismo , Médula Espinal/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Moléculas de Adhesión de Célula Nerviosa/genética , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Oligodendroglía/citología , Médula Espinal/citología , Médula Espinal/embriología , Pez Cebra , Proteínas de Pez Cebra/genética
6.
Neural Dev ; 7: 15, 2012 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-22554084

RESUMEN

BACKGROUND: In the developing vertebrate nervous system elevated levels of Notch signaling activity can block neurogenesis and promote formation of glial cells. The mechanisms that limit Notch activity to balance formation of neurons and glia from neural precursors are poorly understood. RESULTS: By screening for mutations that disrupt oligodendrocyte development in zebrafish we found one allele, called vu56, that produced excess oligodendrocyte progenitor cells (OPCs). Positional cloning revealed that the vu56 allele is a mutation of fbxw7, which encodes the substrate recognition component of a ubiquitin ligase that targets Notch and other proteins for degradation. To investigate the basis of the mutant phenotype we performed in vivo, time-lapse imaging, which revealed that the increase in OPC number resulted from production of extra OPCs by ventral spinal cord precursors and not from changes in OPC proliferation or death. Notch signaling activity was elevated in spinal cord precursors of fbxw7 mutant zebrafish and inhibition of Notch signaling suppressed formation of excess OPCs. CONCLUSION: Notch signaling promotes glia cell formation from neural precursors in vertebrate embryos. Our data indicate that Fbxw7 helps attenuate Notch signaling during zebrafish neural development thereby limiting the number of OPCs.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Linaje de la Célula/fisiología , Proteínas F-Box/metabolismo , Oligodendroglía/citología , Oligodendroglía/metabolismo , Transducción de Señal/fisiología , Células Madre/citología , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Secuencia de Bases , Proteínas de Ciclo Celular/genética , Diferenciación Celular/fisiología , Proteínas F-Box/genética , Proteína 7 que Contiene Repeticiones F-Box-WD , Regulación del Desarrollo de la Expresión Génica , Datos de Secuencia Molecular , Receptor Notch1/genética , Receptor Notch1/metabolismo , Alineación de Secuencia , Células Madre/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Complejos de Ubiquitina-Proteína Ligasa , Ubiquitina-Proteína Ligasas/genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA