Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Molecules ; 25(9)2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32349276

RESUMEN

Pancreatic cancer (PC) is one of the most severe cancers, and its incidence and mortality rates have steadily increased in the past decade. In this study, we demonstrate the effect of Angelica gigas Nakai extract on pancreatic ductal adenocarcinoma cells. We prepared A. gigas Nakai ethanol extract (AGE) using roots of A. gigas Nakai and detected its active compound decursin from AGE by ultra-performance liquid chromatography analysis. AGE and decursin significantly decreased viability and colony formation of PANC-1 and MIA PaCa-2 cells. AGE and decursin induced G0/G1 phase arrest through downregulation of cyclin D1 and cyclin-dependent kinase 4 (CDK4). Caspase-3-dependent apoptosis of PANC-1 cells was promoted by AGE and decursin. Additionally, nontoxic concentrations of AGE and decursin treatment could suppress matrix metalloproteinase (MMP)-2 and MMP-9 expression and activity by inhibiting p38 phosphorylation. Taken together, this study demonstrates that AGE and decursin have potential properties to be considered in PC treatment.


Asunto(s)
Angelica/química , Antineoplásicos/farmacología , Benzopiranos/farmacología , Butiratos/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Extractos Vegetales/farmacología , Raíces de Plantas/química , Apoptosis/efectos de los fármacos , Benzopiranos/química , Butiratos/química , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Ciclina D1/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Neoplasias Pancreáticas/metabolismo , Fosforilación , Extractos Vegetales/análisis , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
2.
Molecules ; 24(21)2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31652886

RESUMEN

Pancreatic cancer (PC) is one of the most aggressive malignancies in the world. Gemcitabine (Gem), a nucleoside pyrimidine analogue, is a first-line chemotherapeutic drug for PC, but the tumor response rate of Gem is very low and resistance to Gem has emerged as a major problem in the treatment of PC. Oat bran, used as animal and human food, has been found to be beneficial to health. In this study, effects of oat bran ethanol extract (OBE) on PC cells and Gem-resistant PC cells were investigated in vitro. OBE decreased cell survival and colony forming ability of PC cells, without any cytotoxicity on the normal pancreatic cells. Flow cytometry analysis and TUNEL assay showed that the OBE reduced G1/S phase transition and induced death in PC cells through AMPK activation and downregulation of JNK. Additionally, OBE could overcome Gem resistance through reduction in RRM1/2 expression and showed synergistic effect by combinatorial treatment with Gem on Gem-resistant PC cells. Additionally, LC-MS data showed that avenacoside A was a component of OBE. Thus, this study elucidated the anti-proliferative effect of OBE and synergistic effect of OBE with Gem on PC cells and Gem-resistant cells.


Asunto(s)
Avena/química , Desoxicitidina/análogos & derivados , Resistencia a Antineoplásicos/efectos de los fármacos , Etanol/química , Neoplasias Pancreáticas/tratamiento farmacológico , Extractos Vegetales/farmacología , Línea Celular Tumoral , Desoxicitidina/farmacología , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Extractos Vegetales/química , Gemcitabina
3.
J Cell Biochem ; 117(9): 2067-77, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26852013

RESUMEN

Although arctigenin (ARC) has been reported to have some pharmacological effects such as anti-inflammation, anti-cancer, and antioxidant, there have been no reports on the anti-obesity effect of ARC. The aim of this study is to investigate whether ARC has an anti-obesity effect and mediates the AMP-activated protein kinase (AMPK) pathway. We investigated the anti-adipogenic effect of ARC using 3T3-L1 pre-adipocytes and human adipose tissue-derived mesenchymal stem cells (hAMSCs). In high-fat diet (HFD)-induced obese mice, whether ARC can inhibit weight gain was investigated. We found that ARC reduced weight gain, fat pad weight, and triglycerides in HFD-induced obese mice. ARC also inhibited the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα) in in vitro and in vivo. Furthermore, ARC induced the AMPK activation resulting in down-modulation of adipogenesis-related factors including PPARγ, C/EBPα, fatty acid synthase, adipocyte fatty acid-binding protein, and lipoprotein lipase. This study demonstrates that ARC can reduce key adipogenic factors by activating the AMPK in vitro and in vivo and suggests a therapeutic implication of ARC for obesity treatment. J. Cell. Biochem. 117: 2067-2077, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Adipocitos/metabolismo , Adipogénesis/efectos de los fármacos , Grasas de la Dieta/efectos adversos , Furanos/farmacología , Lignanos/farmacología , Obesidad , Pérdida de Peso/efectos de los fármacos , Células 3T3-L1 , Animales , Grasas de la Dieta/farmacología , Activación Enzimática/efectos de los fármacos , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Obesidad/inducido químicamente , Obesidad/tratamiento farmacológico , Obesidad/metabolismo
4.
Molecules ; 21(9)2016 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-27618887

RESUMEN

Arctigenin (ARC) has been shown to have an anti-cancer effect in various cell types and tissues. However, there have been no studies concerning metastatic colorectal cancer (CRC). In this study, we investigated the anti-metastatic properties of ARC on colorectal metastasis and present a potential candidate drug. ARC induced cell cycle arrest and apoptosis in CT26 cells through the intrinsic apoptotic pathway via MAPKs signaling. In several metastatic phenotypes, ARC controlled epithelial-mesenchymal transition (EMT) through increasing the expression of epithelial marker E-cadherin and decreasing the expressions of mesenchymal markers; N-cadherin, vimentin, ß-catenin, and Snail. Moreover, ARC inhibited migration and invasion through reducing of matrix metalloproteinase-2 (MMP-2) and MMP-9 expressions. In an experimental metastasis model, ARC significantly inhibited lung metastasis of CT26 cells. Taken together, our study demonstrates the inhibitory effects of ARC on colorectal metastasis.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Furanos/farmacología , Lignanos/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/secundario , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos BALB C , Metástasis de la Neoplasia
5.
BMC Complement Altern Med ; 15: 196, 2015 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-26104582

RESUMEN

BACKGROUND: Ixeris dentata Nakai has been used for the treatment of mithridatism, calculous, indigestion, pneumonia, hepatitis, and tumors in Korea, China, and Japan. However, the effect of a water extract of Ixeris dentata (ID) and its molecular mechanism on allergic inflammation has not been elucidated. In this study, we attempted to evaluate the effects of ID and its major compound caffeic acid on allergic inflammation in vivo and in vitro. METHODS: ID was applied to 2, 4-dinitrofluorobenzene (DNFB)-induced atopic dermatitis (AD)-like skin lesion mice and immune cell infiltration, cytokine production, and the activation of mitogen-activated protein kinases (MAPKs) were investigated. Moreover, the effect of ID on compound 48/80-induced anaphylactic shock was investigated in a mouse model. The human keratinocyte cell line (HaCaT cells) and human mast cells (HMC-1) were treated with ID or caffeic acid to investigate the effects on the production of chemokines and proinflammatory cytokines and on the activation of MAPKs. RESULTS: ID inhibited the serum levels of IgE and interleukin (IL)-1ß in DNFB-induced AD-like skin lesion mouse models and suppressed anaphylactic shock in the mouse models. ID and caffeic acid inhibited the production of chemokines and adhesion molecules in HaCaT cells. In addition, ID reduced the release of tumor necrosis factor-α and IL-8 via the inhibition of MAPKs phosphorylation in HMC-1 cells. CONCLUSIONS: These results suggest that ID is a potential therapeutic agent for allergic inflammatory diseases, including dermatitis.


Asunto(s)
Asteraceae/química , Ácidos Cafeicos/farmacología , Inflamación/metabolismo , Extractos Vegetales/farmacología , Transducción de Señal , Animales , Línea Celular , Humanos , Ratones , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología
6.
BMC Cancer ; 14: 949, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25495942

RESUMEN

BACKGROUND: Inhibition of metastasis through upregulation of immune surveillance is a major purpose of chemokine gene therapy. In this study, we focused on a membrane-bound chemokine CXCL16, which has shown a correlation with a good prognosis for colorectal cancer (CRC) patients. METHODS: We generated a CXCL16-expressing metastatic CRC cell line and identified changes in TNF and apoptosis-related factors. To investigate the effect of CXCL16 on colorectal liver metastasis, we injected SL4-Cont and SL4-CXCL16 cells into intraportal vein in C57BL/6 mice and evaluated the metastasis. Moreover, we analyzed metastatic liver tissues using flow cytometry whether CXCL16 expression regulates the infiltration of M1 macrophages. RESULTS: CXCL16 expression enhanced TNF-α-induced apoptosis through activation of PARP and the caspase-3-mediated apoptotic pathway and through inactivation of the NF-κB-mediated survival pathway. Several genes were changed by CXCL16 expression, but we focused on IRF8, which is a regulator of apoptosis and the metastatic phenotype. We confirmed CXCL16 expression in SL4-CXCL16 cells and the correlation between CXCL16 and IRF8. Silencing of IRF8 significantly decreased TNF-α-induced apoptosis. Liver metastasis of SL4-CXCL16 cells was also inhibited by TNF-α-induced apoptosis through the induction of M1 macrophages, which released TNF-α. Our findings suggest that the accumulation of M1 macrophages and the enhancement of apoptosis by CXCL16 might be an effective dual approach against CRC liver metastasis. CONCLUSIONS: Collectively, this study revealed that CXCL16 regulates immune surveillance and cell signaling. Therefore, we provide the first evidence of CXCL16 serving as an intracellular signaling molecule.


Asunto(s)
Apoptosis/genética , Quimiocinas CXC/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Hepáticas/secundario , Macrófagos/metabolismo , Receptores Depuradores/genética , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Membrana Celular/metabolismo , Quimiocina CXCL16 , Quimiocinas CXC/metabolismo , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/metabolismo , Resistencia a Medicamentos/genética , Expresión Génica , Silenciador del Gen , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Macrófagos/inmunología , Ratones , Interferencia de ARN , Receptores Depuradores/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
7.
Nutrients ; 16(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38931199

RESUMEN

Saikosaponin D (SSD), derived from Bupleurum falcatum L., has various pharmacological properties, including immunoregulatory, anti-inflammatory, and anti-allergic effects. Several studies have investigated the anti-tumor effects of SSD on cancer in multiple organs. However, its role in colorectal cancer (CRC) remains unclear. Therefore, this study aimed to elucidate the suppressive effects of SSD on CRC cell survival and metastasis. SSD reduced the survival and colony formation ability of CRC cells. SSD-induced autophagy and apoptosis in CRC cells were measured using flow cytometry. SSD treatment increased LC3B and p62 autophagic factor levels in CRC cells. Moreover, SSD-induced apoptosis occurred through the cleavage of caspase-9, caspase-3, and PARP, along with the downregulation of the Bcl-2 family. In the in vivo experiment, a reduction in the number of metastatic tumor nodules in the lungs was observed after the oral administration of SSD. Based on these results, SSD inhibits the metastasis of CRC cells to the lungs by inducing autophagy and apoptosis. In conclusion, SSD suppressed the proliferation and metastasis of CRC cells, suggesting its potential as a novel substance for the metastatic CRC treatment.


Asunto(s)
Apoptosis , Autofagia , Neoplasias Colorrectales , Neoplasias Pulmonares , Ácido Oleanólico , Saponinas , Saponinas/farmacología , Ácido Oleanólico/farmacología , Ácido Oleanólico/análogos & derivados , Autofagia/efectos de los fármacos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Humanos , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Antineoplásicos Fitogénicos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Supervivencia Celular/efectos de los fármacos , Ratones Desnudos
8.
Antioxidants (Basel) ; 12(7)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37507964

RESUMEN

Isatidis Radix (IR), the root of Isatis tinctoria L. belonging to Brassicaceae, has been traditionally used as a fever reducer. Although some pharmacological effects, such as anti-diabetes, anti-virus, and anti-inflammatory, have been reported, there is no study on the anti-obesity effect of IR. This study used 3T3-L1 cells, human mesenchymal adipose stem cells (hAMSCs), and a high-fat diet (HFD)-induced obese mouse model to confirm the anti-adipogenic effect of IR. Intracellular lipid accumulation in 3T3-L1 cells and hAMSCs was decreased by IR treatment.IR extract especially suppressed reactive oxygen species (ROS) production through a cluster of differentiation 36 (CD36)-AMP-activated protein kinase (AMPK) pathway. Consequently, the expressions of peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT-enhancer-binding proteins alpha (C/EBPα), and fatty acid synthesis (FAS) were inhibited by IR extract. In addition, ß-oxidation-related genes were also decreased by treatment of IR extract. IR inhibited weight gain through this cascade in the HFD-induced obese mouse model. IR significantly suppressed lipid accumulation in epididymal white adipose tissue (eWAT). Furthermore, the administration of IR extract decreased serum free fatty acid (FFA), total cholesterol (TC), and LDL cholesterol, suggesting that it could be a potential drug for obesity by inhibiting lipid accumulation.

9.
Phytomedicine ; 96: 153809, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34782203

RESUMEN

BACKGROUND: Despite the rising 5-year survival rate of colorectal cancer (CRC) patients, the survival rate decreases as the stage progress, and a low survival rate is highly associated with metastasis. PURPOSE: The purpose of our study is to investigate the effect of dehydroevodiamine (DHE) on the lung metastasis of CRC and the proliferation of CRC cells. STUDY DESIGN: Cell death was confirmed after DHE treatment on several CRC cell lines. The mechanism of cell cytotoxicity was found using flow cytometry. After that, the expression of the proteins or mRNAs related to the cell cytotoxicity was confirmed. Also, anti-metastatic ability of DHE in CRC cells was measured by checking the expression of Epithelial to Mesenchymal Transition (EMT) markers. Lung metastasis mouse model was established, and DHE was administered orally for 14 days. RESULTS: DHE suppressed the viability of HCT116, CT26, SW480, and LoVo cells. DHE treatment led to G2/M arrest via a reduction of cyclin B1/CDK1 and caspase-dependent apoptosis. It also induced autophagy by regulating LC3-II and beclin-1 expression. Additionally, migration and invasion of CRC cells were decreased by DHE through regulation of the expression of EMT markers. Oral administration of DHE could inhibit the lung metastasis of CT26 cells in an in vivo model. CONCLUSION: Our study demonstrated that DHE has a potential therapeutic effect on colorectal cancer metastasis.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Pulmonares , Alcaloides , Animales , Apoptosis , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Transición Epitelial-Mesenquimal , Puntos de Control de la Fase G2 del Ciclo Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Metástasis de la Neoplasia
10.
Nutrients ; 14(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36364815

RESUMEN

Colorectal cancer (CRC) is one of the diseases with the highest rates of prevalence and mortality despite therapeutic methods in the world. In particular, there are not enough methods to treat metastasis of CRC cells to distant organs. Cannabis sativa Linne (C. sativa) is a popular medicinal plant used by humans to treat many diseases. Recently, extracts of C. sativa have shown diverse pharmacological effects as a result of choosing different extraction methods. In this study, we performed experiments to confirm the inhibitory effect and related mechanisms of supercritical extract of C. sativa on metastatic CRC cells. The effect of SEC on the viability of CRC cell lines, CT26 and HCT116, was determined using CCK reagent. Flow cytometry was performed to confirm whether SEC can promote cell cycle arrest and apoptosis. Additionally, SEC reduced proliferation of CT26 and HCT116 cells without causing toxicity to normal colon cell line CCD-18Co cells. SEC treatment reduced colony formation in both CRC cell lines, promoted G0/G1 phase arrest and apoptosis in CT26 and HCT116 cells through AMPK activation and MAPKs such as ERK, JNK, and p38 inactivation. Moreover, oral administration of SEC decreased pulmonary metastasis of CT26 cells. Our research demonstrates the inhibitory effect of SEC on CRC cell proliferation and metastasis. Thus, SEC might have therapeutic potential for CRC treatment.


Asunto(s)
Cannabis , Neoplasias Colorrectales , Neoplasias Pulmonares , Humanos , Proteínas Quinasas Activadas por AMP , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Puntos de Control del Ciclo Celular , Apoptosis , Neoplasias Pulmonares/patología , Proliferación Celular
11.
Am J Chin Med ; 49(8): 1929-1948, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34961413

RESUMEN

Although gomisin A (GA) alleviates cancer and inflammation, its anti-obesity effect and the underlying mechanism have not yet been elucidated. Therefore, in this study, we aimed to elucidate the anti-obesity effects of GA by investigating the phenotypic changes involved in the browning and whitening of adipocytes. Here, obesity was induced to C57BL/6J mice using a high-fat diet (HFD). We administrated GA and checked weight changes for 12 weeks. We found that GA decreased the weight of weight gain, epididymal white adipose tissue (eWAT), and liver in the mice. In addition, the administration of GA elevated the levels of high-density lipoprotein (HDL)-cholesterol in the mice serum. Moreover, even after 12 weeks of treatment with GA, it did not cause any hepatic and renal toxicity. However, we found that GA induced the browning of eWAT and inhibited the whitening of brown adipose tissue. We further confirmed the anti-obesity mechanism of GA using 3T3-L1 cells, the human adipose mesenchymal stem cells (hAMSCs), and primary brown adipocytes (BAs) in vitroexperiments. We found that GA suppressed adipogenesis via the activation of AMP-activated protein kinase (AMPK). Furthermore, GA-induced browning by increasing the expression levels of uncoupling protein 1 (UCP1) in hAMSCs. The results of our study indicate that GA can inhibit weight gain by regulating the phenotypic changes involved in the browning and whitening of adipose tissues, which makes it a potential therapeutic agent for the treatment of obesity.


Asunto(s)
Adipocitos Marrones , Obesidad , Células 3T3-L1 , Tejido Adiposo Pardo , Animales , Ciclooctanos , Dieta Alta en Grasa/efectos adversos , Dioxoles , Lignanos , Ratones , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico
12.
Antioxidants (Basel) ; 10(4)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33806109

RESUMEN

Recent research suggests a relationship between cancer progression and oxidative mechanisms. Among the phenolic compounds such as tracheloside (TCS) are a major bioactive compound that can combat oxidant stress-related chronic diseases and that also displays anti-tumor activity. Although TCS can inhibit mammalian carcinoma, its effects on colorectal cancer (CRC) have not been clarified. The purpose of this study was to investigate the effects of TCS on the proliferation of CRC cells, the metastasis of CT26 cells, and the molecular mechanisms related to TCS in vitro and in vivo. A cell viability assay showed that TCS inhibited the proliferation of CRC cells. TCS-treated CT26 cells were associated with the upregulation of p16 as well as the downregulation of cyclin D1 and CDK4 in cell cycle arrest. In addition, TCS induced apoptosis of CT26 cells through mitochondria-mediated apoptosis and regulation of the Bcl-2 family. Expression of epithelial-mesenchymal transition (EMT) markers was regulated by TCS treatment in CT26 cells. TCS significantly inhibited the lung metastasis of CT26 cells in a mouse model. These results suggest that TCS, by inducing cell cycle arrest and apoptosis through its anti-oxidant properties, is a novel therapeutic agent that inhibits metastatic phenotypes of murine CRC cells.

13.
Am J Chin Med ; 49(6): 1535-1555, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34247563

RESUMEN

Colorectal cancer (CRC) is the second most common cause of cancer death in the world, and metastatic CRC is a major cause of cancer death. Gallotannin (GT), a polyphenolic compound, has shown various biological effects such as anti-oxidant, anti-inflammatory, antimicrobial, and antitumor effects. However, the effects of GT on metastatic CRC cells are not completely understood. This study aimed to investigate the anti-metastatic effect of GT and the underlying mechanisms on metastatic CRC cells. Oral administration of GT suppressed the lung metastasis of metastatic CRC cells in the experimental mouse model. GT decreased the viability of metastatic CRC cell lines, including CT26, HCT116, and SW620, by inducing apoptosis through the activation of extrinsic and intrinsic pathways, cell cycle arrest through inactivation of CDK2/cyclin A complex, and autophagic cell death through up-regulation of LC3B and p62 levels. GT regulated PI3K/AKT/mTOR and AMPK signaling pathways, which are critical for the development and maintenance of cancer. Additionally, non-cytotoxic concentrations of GT can suppress migration and invasion of CRC cells by inhibiting the expression and activity of matrix metalloproteinase (MMP)-2 and MMP-9 and epithelial-mesenchymal transition by downregulating the expression of mesenchymal markers including snail, twist, and vimentin. In conclusion, GT prevented colorectal lung metastasis by reducing survival and inhibiting the metastatic phenotypes of CRC cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Taninos Hidrolizables/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Taninos Hidrolizables/química , Neoplasias Pulmonares/secundario , Ratones , Estructura Molecular
14.
Chin J Integr Med ; 26(11): 839-844, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31069694

RESUMEN

OBJECTIVE: To study the effect of Liuwei Dihuang Decoction () or Yukmijihwangtang (YJT) on endurance exercise by in vivo experiment. METHODS: ICR mice were randomly divided into the control group (distilled water) and the YJT groups (1, 10, 100 mg/kg), 5 animals per group. YJT and distilled water were orally administered. The anti-fatigue effect of YJT was evaluated by open fifiled test (OFT), forced swimming test (FST), and tail suspension test (TST). RESULTS: In the OFT, YJT signifificantly increased the total movement distance in a dose-dependent manner. Additionally, treatment with YJT signifificantly decreased immobility time in the FST and the TST. Various neurotransmitters such as norepinephrine (NE), serotonin (5-HT), dopamine (DA) levels were increased by FST. Administration of YJT down-regulated the expression levels of NE, 5-HT, 5-hydroxyindole-acetic acid (5-HIAA), and DA in the brain stem and hypothalamus of mice. Moreover, protein expression of HSP70 in mice liver and heart muscles was signifificantly increased in the YJT groups. CONCLUSIONS: YJT could ameliorate fatigue and enhance exercise tolerance through suppressing of brain monoamines including NE, 5-HT, 5-HIAA, and DA in FST mice model.


Asunto(s)
Encéfalo/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Tolerancia al Ejercicio/efectos de los fármacos , Fatiga/tratamiento farmacológico , Neurotransmisores/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos ICR
15.
Phytomedicine ; 68: 153147, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32028184

RESUMEN

BACKGROUND: Gomisin A (G.A), a lignan compound extracted from the fruits of Schisandra chinensis, is known to exert anti-tumor effects on hepatocarcinoma and colorectal cancer cells. Suppression of proliferation and metastatic abilities of cancer cells are some effective cancer treatment methods. PURPOSE: The objective of this study is to investigate the effects of G.A on metastatic melanoma, and the mechanism by which it affects metastatic melanoma. STUDY DESIGN: The anti-proliferative and anti-metastatic effects of G.A were observed in in vitro and in vivo. METHODS: WST assay and flow cytometry were conducted to investigate the effect of G.A on proliferation, cell cycle arrest, and apoptosis in metastatic melanoma cell lines. Migration and invasion abilities of G.A-treated melanoma cells were observed by wound healing and invasion assays. RESULTS: G.A (25-100 µM) decreased the viability of melanoma cells by inducing cell cycle arrest and apoptosis. These anti-proliferative effects of G.A were found to be mediated by AMPK, ERK, and JNK activation. G.A (5-20 µM) decreased the migration and invasion of melanoma cells by suppressing epithelial-mesenchymal transition (EMT). Consequently, G.A (2-50 mg/kg) inhibited lung metastasis by suppressing EMT and inducing cell cycle arrest and apoptosis in melanoma cells. CONCLUSION: These results conclude that G.A has the potential to reduce metastatic melanoma through its anti-proliferative and anti-metastatic effects.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Ciclooctanos/farmacología , Dioxoles/farmacología , Lignanos/farmacología , Melanoma/tratamiento farmacológico , Melanoma/patología , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/secundario , MAP Quinasa Quinasa 4/metabolismo , Melanoma/metabolismo , Ratones Endogámicos C57BL , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Nutrients ; 12(10)2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-33086629

RESUMEN

BACKGROUND: Cachexia induced by cancer is a systemic wasting syndrome and it accompanies continuous body weight loss with the exhaustion of skeletal muscle and adipose tissue. Cancer cachexia is not only a problem in itself, but it also reduces the effectiveness of treatments and deteriorates quality of life. However, effective treatments have not been found yet. Although Arctii Fructus (AF) has been studied about several pharmacological effects, there were no reports on its use in cancer cachexia. METHODS: To induce cancer cachexia in mice, we inoculated CT-26 cells to BALB/c mice through subcutaneous injection and intraperitoneal injection. To mimic cancer cachexia in vitro, we used conditioned media (CM), which was CT-26 colon cancer cells cultured medium. RESULTS: In in vivo experiments, AF suppressed expression of interleukin (IL)-6 and atrophy of skeletal muscle and adipose tissue. As a result, the administration of AF decreased mortality by preventing weight loss. In adipose tissue, AF decreased expression of uncoupling protein 1 (UCP1) by restoring AMP-activated protein kinase (AMPK) activation. In in vitro model, CM increased muscle degradation factors and decreased adipocytes differentiation factors. However, these tendencies were ameliorated by AF treatment in C2C12 myoblasts and 3T3-L1 cells. CONCLUSION: Taken together, our study demonstrated that AF could be a therapeutic supplement for patients suffering from cancer cachexia.


Asunto(s)
Tejido Adiposo/patología , Arctium/química , Caquexia/tratamiento farmacológico , Músculo Esquelético/patología , Fitoterapia , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Pérdida de Peso/efectos de los fármacos , Células 3T3-L1 , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Atrofia/prevención & control , Caquexia/etiología , Caquexia/genética , Expresión Génica/efectos de los fármacos , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Neoplasias/complicaciones , Extractos Vegetales/aislamiento & purificación , Células Tumorales Cultivadas , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
17.
Foods ; 9(11)2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-33147777

RESUMEN

Rubus coreanus Miquel (R. coreanus) is a unripen fruit of black raspberry native to eastern Asia. It is used as traditional oriental medicine and supplementary foods for centuries. Previous studies have shown that the R. coreanus extract (RCE) and its main constitute ellagic acid possess diverse biological activities. However, the effects of RCE on antitumor immunity and T cell function were not fully understood. The present study describes the anti-tumor effect of RCE in humanized PD-1 mice by blocking PD-1/PD-L1 interaction. Competitive enzyme-linked immunosorbent assay (ELISA) and pull down assay were performed to elucidate the binding properties of RCE in vitro. Cellular PD-1/PD-L1 blockade activities were measured by T cell receptor (TCR)-induced nuclear factor of activated T cells-luciferase activity in co-cultured cell models with PD-1/NFAT Jurkat and PD-L1/aAPC CHO-K1 cells. The in vivo efficacy of RCE was confirmed in humanized PD-1 mice bearing MC38 colorectal tumor. RCE and ellagic acid dose-dependently block the binding of PD-1 to PD-L1. Moreover, oral administration of RCE showed the potent anti-tumor activity similar to anti-PD-1 antibody. The present study suggests that RCE possesses potent anti-tumor effect via PD-1/PD-L1 blockade, and ellagic acid is the main compound in RCE. Thus, we provide new aspects of RCE as an immunotherapeutic agent.

18.
J Ginseng Res ; 43(2): 282-290, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30976166

RESUMEN

BACKGROUND: Ginsenoside Rg3 (G-Rg3) is the major bioactive ingredient of Panax ginseng and has many pharmacological effects, including antiadipogenic, antiviral, and anticancer effects. However, the effect of G-Rg3 on mast cell-mediated allergic inflammation has not been investigated. METHOD: The antiallergic effects of G-Rg3 on allergic inflammation were evaluated using the human and rat mast cell lines HMC-1 and RBL-2H3. Antiallergic effects of G-Rg3 were detected by measuring cyclic adenosine monophosphate (cAMP), detecting calcium influx, and using real-time reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, Western blotting, and in vivo experiments. RESULTS: G-Rg3 decreased histamine release from activated mast cells by enhancing cAMP levels and calcium influx. Proinflammatory cytokine production was suppressed by G-Rg3 treatment via regulation of the mitogen-activated protein kinases/nuclear factor-kappa B and receptor-interacting protein kinase 2 (RIP2)/caspase-1 signaling pathway in mast cells. Moreover, G-Rg3 protected mice against the IgE-mediated passive cutaneous anaphylaxis reaction and compound 48/80-induced anaphylactic shock. CONCLUSION: G-Rg3 may serve as an alternative therapeutic agent for improving allergic inflammatory disorders.

19.
J Ginseng Res ; 43(1): 68-76, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30662295

RESUMEN

BACKGROUND: In colorectal cancer (CRC), 40-60% of patients develop metastasis. The epithelial-mesenchymal transition (EMT) is a pivotal and intricate process that increases the metastatic potential of CRC. The aim of this study was to investigate the effect of Korean Red Ginseng extract (RGE) on colorectal metastasis through inhibition of EMT and the metastatic abilities of CRC cells. METHODS: To investigate the effect of RGE on the metastatic phenotypes of CRC cells, CT26 and HT29 cells were evaluated by using an adhesion assay, a wound-healing assay, an invasion assay, zymography, and real-time reverse transcription-polymerase chain reaction. Western-blot analysis was conducted to elucidate the molecular mechanisms of RGE, which showed an inhibitory effect on the transforming growth factor-ß1 (TGF-ß1)-induced EMT in HT29 cells. Additionally, the antimetastatic effect of RGE was evaluated in a mouse model of lung metastasis injected with CT26 cells. RESULTS: RGE decreased the adhesion and migration ability of the CT26 cells and TGF-ß1-treated HT29 cells. The invasion ability was also reduced by RGE treatment through the inhibition of matrix metalloproteinase-9 expression and activity. Moreover, RGE suppressed the TGF-ß1-induced EMT via TGF-ß1/Smad-signaling-mediated Snail/E-cadherin expression in HT29 cells and lung tissue in CT26 tumor-bearing mice. CONCLUSION: Our results demonstrated that RGE inhibited colorectal lung metastasis through a reduction in metastatic phenotypes, such as migration, invasion, and the EMT of CRC cells.

20.
Oncol Rep ; 41(1): 202-212, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30365120

RESUMEN

Galla Rhois is a commonly used medicine in East Asia for the treatment of several diseases. However, the effects of Galla Rhois on the metastasis of colorectal cancer (CRC) and the underlying molecular mechanisms have not been studied. We investigated the anti­metastatic properties of Galla Rhois water extract (GRWE) on metastatic CRC cells. The effect of GRWE on the viability of colon 26 (CT26) cells was evaluated using WST­8 assay. Annexin V assay and western blot analysis were performed to elucidate the underlying molecular mechanisms involved in apoptosis. GRWE suppressed viability of CT26 cells by inducing apoptosis through the cleavage of caspase­3 and PARP, downregulation of caspase­8, caspase­9, Bcl­2 and Bcl­xL, and upregulation of Bax. Metastatic phenotypes such as epithelial­mesenchymal transition (EMT), migration, and invasion of CRC cells were investigated by real­time reverse transcription polymerase chain reaction, wound healing assay, and matrigel invasion assay, respectively. Non­cytotoxic concentrations of GRWE inhibited EMT in CRC cells by regulating the expression of EMT markers. GRWE attenuated cell migration and invasion through the inhibition of matrix metalloproteinase (MMP)­2 and MMP­9 activity. Moreover, GRWE suppressed colorectal lung metastasis in vivo, suggestive of its potential application for the treatment of colorectal metastasis.


Asunto(s)
Adenilato Quinasa/metabolismo , Productos Biológicos/administración & dosificación , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/secundario , Animales , Productos Biológicos/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HT29 , Humanos , Neoplasias Pulmonares/metabolismo , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA