Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 96(1): e0096421, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34668775

RESUMEN

A comprehensive analysis and characterization of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection model that mimics non-severe and severe coronavirus disease 2019 (COVID-19) in humans is warranted for understating the virus and developing preventive and therapeutic agents. Here, we characterized the K18-hACE2 mouse model expressing human (h)ACE2 in mice, controlled by the human keratin 18 (K18) promoter, in the epithelia, including airway epithelial cells where SARS-CoV-2 infections typically start. We found that intranasal inoculation with higher viral doses (2 × 103 and 2 × 104 PFU) of SARS-CoV-2 caused lethality of all mice and severe damage of various organs, including lung, liver, and kidney, while lower doses (2 × 101 and 2 × 102 PFU) led to less severe tissue damage and some mice recovered from the infection. In this hACE2 mouse model, SARS-CoV-2 infection damaged multiple tissues, with a dose-dependent effect in most tissues. Similar damage was observed in postmortem samples from COVID-19 patients. Finally, the mice that recovered from infection with a low dose of virus survived rechallenge with a high dose of virus. Compared to other existing models, the K18-hACE2 model seems to be the most sensitive COVID-19 model reported to date. Our work expands the information available about this model to include analysis of multiple infectious doses and various tissues with comparison to human postmortem samples from COVID-19 patients. In conclusion, the K18-hACE2 mouse model recapitulates both severe and non-severe COVID-19 in humans being dose-dependent and can provide insight into disease progression and the efficacy of therapeutics for preventing or treating COVID-19. IMPORTANCE The pandemic of coronavirus disease 2019 (COVID-19) has reached nearly 240 million cases, caused nearly 5 million deaths worldwide as of October 2021, and has raised an urgent need for the development of novel drugs and therapeutics to prevent the spread and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To achieve this goal, an animal model that recapitulates the features of human COVID-19 disease progress and pathogenesis is greatly needed. In this study, we have comprehensively characterized a mouse model of SARS-CoV-2 infection using K18-hACE2 transgenic mice. We infected the mice with low and high doses of SARS-CoV-2 to study the pathogenesis and survival in response to different infection patterns. Moreover, we compared the pathogenesis of the K18-hACE2 transgenic mice with that of the COVID-19 patients to show that this model could be a useful tool for the development of antiviral drugs and therapeutics.


Asunto(s)
COVID-19/patología , Modelos Animales de Enfermedad , SARS-CoV-2/patogenicidad , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/inmunología , COVID-19/mortalidad , COVID-19/virología , Humanos , Sueros Inmunes/inmunología , Queratina-18/genética , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas , Reinfección/inmunología , Reinfección/mortalidad , Reinfección/patología , Reinfección/virología , SARS-CoV-2/inmunología , Proteínas Virales/genética , Proteínas Virales/metabolismo
2.
3.
BMC Microbiol ; 14: 125, 2014 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-24886039

RESUMEN

BACKGROUND: Cryptococcus gattii has been the cause of an ongoing outbreak starting in 1999 on Vancouver Island, British Columbia and spreading to mainland Canada and the US Pacific Northwest. In the course of the outbreak, C. gattii has been identified outside of its previously documented climate, habitat, and host disease. Genotyping of C. gattii is essential to understand the ecological and geographical expansion of this emerging pathogen. METHODS: We developed and validated a mismatch amplification mutation assay (MAMA) real-time PCR panel for genotyping C. gattii molecular types VGI-VGIV and VGII subtypes a,b,c. Subtype assays were designed based on whole-genome sequence of 20 C. gattii strains. Publically available multilocus sequence typing (MLST) data from a study of 202 strains was used for the molecular type (VGI-VGIV) assay design. All assays were validated across DNA from 112 strains of diverse international origin and sample types, including animal, environmental and human. RESULTS: Validation revealed each assay on the panel is 100% sensitive, specific and concordant with MLST. The assay panel can detect down to 0.5 picograms of template DNA. CONCLUSIONS: The (MAMA) real-time PCR panel for C. gattii accurately typed a collection of 112 diverse strains and demonstrated high sensitivity. This is a time and cost efficient method of genotyping C. gattii best suited for application in large-scale epidemiological studies.


Asunto(s)
Cryptococcus gattii/clasificación , Cryptococcus gattii/genética , Técnicas de Genotipaje/métodos , Técnicas de Tipificación Micológica/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Animales , Criptococosis/microbiología , Criptococosis/veterinaria , Cryptococcus gattii/aislamiento & purificación , ADN de Hongos/genética , Microbiología Ambiental , Humanos , Epidemiología Molecular/métodos , América del Norte/epidemiología , Sensibilidad y Especificidad
4.
BMC Vet Res ; 10: 107, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24885415

RESUMEN

BACKGROUND: Information about the genotypic characteristic of Coxiella burnetii from Hungary is lacking. The aim of this study is to describe the genetic diversity of C. burnetii in Hungary and compare genotypes with those found elsewhere. A total of 12 samples: (cattle, n = 6, sheep, n = 5 and human, n = 1) collected from across Hungary were studied by a 10-loci multispacer sequence typing (MST) and 6-loci multiple-locus variable-number of tandem repeat analysis (MLVA). Phylogenetic relationships among MST genotypes show how these Hungarian samples are related to others collected around the world. RESULTS: Three MST genotypes were identified: sequence type (ST) 20 has also been identified in ruminants from other European countries and the USA, ST28 was previously identified in Kazakhstan, and the proposed ST37 is novel. All MST genotypes yielded different MLVA genotypes and three different MLVA genotypes were identified within ST20 samples alone. Two novel MLVA types 0-9-5-5-6-2 (AG) and 0-8-4-5-6-2 (AF) (Ms23-Ms24-Ms27-Ms28-Ms33-Ms34) were defined in the ovine materials correlated with ST28 and ST37. Samples from different parts of the phylogenetic tree were associated with different hosts, suggesting host-specific adaptations. CONCLUSIONS: Even with the limited number of samples analysed, this study revealed high genetic diversity among C. burnetii in Hungary. Understanding the background genetic diversity will be essential in identifying and controlling outbreaks.


Asunto(s)
Enfermedades de los Bovinos/microbiología , Coxiella burnetii/genética , Genotipo , Fiebre Q/veterinaria , Enfermedades de las Ovejas/microbiología , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , Coxiella burnetii/aislamiento & purificación , Humanos , Hungría/epidemiología , Filogenia , Fiebre Q/epidemiología , Fiebre Q/microbiología , Ovinos , Enfermedades de las Ovejas/epidemiología , Especificidad de la Especie
5.
Proc Natl Acad Sci U S A ; 108(12): 5027-32, 2011 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-21383169

RESUMEN

Before the anthrax letter attacks of 2001, the developing field of microbial forensics relied on microbial genotyping schemes based on a small portion of a genome sequence. Amerithrax, the investigation into the anthrax letter attacks, applied high-resolution whole-genome sequencing and comparative genomics to identify key genetic features of the letters' Bacillus anthracis Ames strain. During systematic microbiological analysis of the spore material from the letters, we identified a number of morphological variants based on phenotypic characteristics and the ability to sporulate. The genomes of these morphological variants were sequenced and compared with that of the B. anthracis Ames ancestor, the progenitor of all B. anthracis Ames strains. Through comparative genomics, we identified four distinct loci with verifiable genetic mutations. Three of the four mutations could be directly linked to sporulation pathways in B. anthracis and more specifically to the regulation of the phosphorylation state of Spo0F, a key regulatory protein in the initiation of the sporulation cascade, thus linking phenotype to genotype. None of these variant genotypes were identified in single-colony environmental B. anthracis Ames isolates associated with the investigation. These genotypes were identified only in B. anthracis morphotypes isolated from the letters, indicating that the variants were not prevalent in the environment, not even the environments associated with the investigation. This study demonstrates the forensic value of systematic microbiological analysis combined with whole-genome sequencing and comparative genomics.


Asunto(s)
Bacillus anthracis/genética , Bioterrorismo , Ciencias Forenses/métodos , Sitios Genéticos , Genoma Bacteriano/genética , Mutación , Análisis Mutacional de ADN/métodos , Estudio de Asociación del Genoma Completo/métodos , Humanos
6.
Mol Microbiol ; 84(3): 516-29, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22435733

RESUMEN

Burkholderia pseudomallei is a category B pathogen and the causative agent of melioidosis--a serious infectious disease that is typically acquired directly from environmental reservoirs. Nearly all B. pseudomallei strains sequenced to date (> 85 isolates) contain gene clusters that are related to the contact-dependent growth inhibition (CDI) systems of γ-proteobacteria. CDI systems from Escherichia coli and Dickeya dadantii play significant roles in bacterial competition, suggesting these systems may also contribute to the competitive fitness of B. pseudomallei. Here, we identify 10 distinct CDI systems in B. pseudomallei based on polymorphisms within the cdiA-CT/cdiI coding regions, which are predicted to encode CdiA-CT/CdiI toxin/immunity protein pairs. Biochemical analysis of three B. pseudomallei CdiA-CTs revealed that each protein possesses a distinct tRNase activity capable of inhibiting cell growth. These toxin activities are blocked by cognate CdiI immunity proteins, which specifically bind the CdiA-CT and protect cells from growth inhibition. Using Burkholderia thailandensis E264 as a model, we show that a CDI system from B. pseudomallei 1026b mediates CDI and is capable of delivering CdiA-CT toxins derived from other B. pseudomallei strains. These results demonstrate that Burkholderia species contain functional CDI systems, which may confer a competitive advantage to these bacteria.


Asunto(s)
Proteínas Bacterianas/inmunología , Toxinas Bacterianas/inmunología , Burkholderia pseudomallei/crecimiento & desarrollo , Burkholderia pseudomallei/metabolismo , Inhibición de Contacto , Melioidosis/inmunología , Melioidosis/microbiología , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Burkholderia pseudomallei/enzimología , Burkholderia pseudomallei/genética , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Humanos , Familia de Multigenes
7.
Int J Legal Med ; 127(1): 77-83, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22395921

RESUMEN

It has been recorded that one of the possible causes that eventually escalated into the 1857 manslaughter at Mountain Meadows in Southern Utah was the poisoning of an open spring by the Fancher-Baker party as they crossed the Utah territory on their way from Arkansas to California. Historical accounts report that a number of cattle died, followed by human casualties from those that came in contact with the dead animals. Even after the Arkansas party departed, animals continued to perish and people were still afflicted by some unknown plague. Proctor Hancock Robison, a local 14-year-old boy, died shortly after skinning one of the "poisoned" cows. A careful review of the historical records, along with the more recent scientific literature, seems to exclude the likelihood of actual poisoning in favor of a more recent theory that would point to the bacterium Bacillus anthracis as the possible cause of human and animal deaths. In order to test this hypothesis, Proctor's remains were exhumed, identified through mitochondrial DNA analysis, and tested for the presence of anthrax spores. Although preliminary testing of remains and soil was negative, description of the clinical conditions that affected Proctor and other individuals does not completely rule out the hypothesis of death by anthrax.


Asunto(s)
Carbunco/historia , Bacillus anthracis/genética , ADN Mitocondrial/genética , Animales , Carbunco/genética , Huesos/química , Bovinos/microbiología , ADN Bacteriano/genética , Exhumación , Femenino , Historia del Siglo XIX , Humanos , Masculino , ARN Ribosómico 16S , Reacción en Cadena en Tiempo Real de la Polimerasa , Microbiología del Suelo , Esporas Bacterianas , Utah
10.
BMC Vet Res ; 9: 76, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-23587163

RESUMEN

BACKGROUND: Little is currently known about Brucella evolution within the host during infection. The current study is the first to employ fine-scale genotyping on an isolate collection derived from a Brucella canis outbreak. Eight isolates of B. canis, cultured from different tissues of three dogs (female, stud dog, puppy of another female) from a single kennel over three months were genetically characterized with a 15-marker multi-locus, variable-number tandem repeat (VNTR) analysis (MLVA) to assess the genetic relatedness of isolates and potential rapid mutational changes. RESULTS: MLVA discriminated among the otherwise indistinguishable isolates from different animals and from isolates collected at different time points within each host, with different VNTR alleles being detected at multiple dates and tissue sites. We suspect that all isolates cultured from the female, puppy, and stud dogs originated from the same strain, with subsequent rapid in vivo mutations. However, high mutation rates and apparent in several of the loci prevented making definitive epidemiological relationships among isolates. CONCLUSIONS: This investigation highlights the rapid in vivo genetic mutations of several VNTRs of B. canis over a short time period in the host and the emergence of alternate alleles. However, this work also suggests the challenges of using highly mutable VNTRs to infer epidemiological relationships of strains within a short duration outbreak.


Asunto(s)
Brucella canis/genética , Brucelosis/veterinaria , Enfermedades de los Perros/microbiología , Animales , Brucelosis/epidemiología , Brucelosis/microbiología , Brotes de Enfermedades/veterinaria , Enfermedades de los Perros/epidemiología , Perros , Evolución Molecular , Femenino , Genotipo , Vivienda para Animales , Hungría/epidemiología , Masculino , Repeticiones de Minisatélite/genética , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria
11.
PLoS One ; 18(3): e0282428, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36947490

RESUMEN

The National Aeronautics and Space Administration (NASA) has been monitoring the microbial burden of spacecraft since the 1970's Viking missions. Originally culture-based and then focused 16S sequencing techniques were used, but we have now applied whole metagenomic sequencing to a variety of cleanroom samples at the Jet Propulsion Lab (JPL), including the Spacecraft Assembly Facility (SAF) with the goals of taxonomic identification and for functional assignment. Our samples included facility pre-filters, cleanroom vacuum debris, and surface wipes. The taxonomic composition was carried out by three different analysis tools to contrast marker, k-mer, and true alignment approaches. Hierarchical clustering analysis of the data separated vacuum particles from other SAF DNA samples. Vacuum particle samples were the most diverse while DNA samples from the ISO (International Standards Organization) compliant facilities and the SAF were the least diverse; all three were dominated by Proteobacteria. Wipe samples had higher diversity and were predominated by Actinobacteria, including human commensals Cutibacterium acnes and Corynebacterium spp. Taxa identified by the three methods were not identical, supporting the use of multiple methods for metagenome characterization. Likewise, functional annotation was performed using multiple methods. Vacuum particles and SAF samples contained strong signals of the tricarboxylic acid cycle and of amino acid biosynthesis, suggesting that many of the identified microorganisms have the ability to grow in nutrient-limited environments. In total, 18 samples generated high quality metagenome assembled genomes (MAG), which were dominated by Moraxella osloensis or Malassezia restricta. One M. osloensis MAG was assembled into a single circular scaffold and gene annotated. This study includes a rigorous quantitative determination of microbial loads and a qualitative dissection of microbial composition. Assembly of multiple specimens led to greater confidence for the identification of particular species and their predicted functional roles.


Asunto(s)
Metagenoma , Nave Espacial , Humanos , Bacterias/genética
12.
Nat Commun ; 14(1): 1936, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024459

RESUMEN

Serine proteases (SP), including furin, trypsin, and TMPRSS2 cleave the SARS-CoV-2 spike (S) protein, enabling the virus to enter cells. Here, we show that factor (F) Xa, an SP involved in blood coagulation, is upregulated in COVID-19 patients. In contrast to other SPs, FXa exerts antiviral activity. Mechanistically, FXa cleaves S protein, preventing its binding to ACE2, and thus blocking viral entry and infection. However, FXa is less effective against variants carrying the D614G mutation common in all pandemic variants. The anticoagulant rivaroxaban, a direct FXa inhibitor, inhibits FXa-mediated S protein cleavage and facilitates viral entry, whereas the indirect FXa inhibitor fondaparinux does not. In the lethal SARS-CoV-2 K18-hACE2 model, FXa prolongs survival yet its combination with rivaroxaban but not fondaparinux abrogates that protection. These results identify both a previously unknown function for FXa and an associated antiviral host defense mechanism against SARS-CoV-2 and suggest caution in considering direct FXa inhibitors for preventing or treating thrombotic complications in COVID-19 patients.


Asunto(s)
COVID-19 , Factor Xa , Humanos , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Rivaroxabán/farmacología , Rivaroxabán/uso terapéutico , SARS-CoV-2/metabolismo , Internalización del Virus , Antivirales/farmacología
13.
One Health ; 16: 100518, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37363239

RESUMEN

A one-health perspective may provide new and actionable information about Escherichia coli transmission. E. coli colonizes a broad range of vertebrates, including humans and food-production animals, and is a leading cause of bladder, kidney, and bloodstream infections in humans. Substantial evidence supports foodborne transmission of pathogenic E. coli strains from food animals to humans. However, the relative contribution of foodborne zoonotic E. coli (FZEC) to the human extraintestinal disease burden and the distinguishing characteristics of such strains remain undefined. Using a comparative genomic analysis of a large collection of contemporaneous, geographically-matched clinical and meat-source E. coli isolates (n = 3111), we identified 17 source-associated mobile genetic elements - predominantly plasmids and bacteriophages - and integrated them into a novel Bayesian latent class model to predict the origins of clinical E. coli isolates. We estimated that approximately 8 % of human extraintestinal E. coli infections (mostly urinary tract infections) in our study population were caused by FZEC. FZEC strains were equally likely to cause symptomatic disease as non-FZEC strains. Two FZEC lineages, ST131-H22 and ST58, appeared to have particularly high virulence potential. Our findings imply that FZEC strains collectively cause more urinary tract infections than does any single non-E. coli uropathogenic species (e.g., Klebsiella pneumoniae). Our novel approach can be applied in other settings to identify the highest-risk FZEC strains, determine their sources, and inform new one-health strategies to decrease the heavy public health burden imposed by extraintestinal E. coli infections.

14.
J Bacteriol ; 194(23): 6670-1, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23144412

RESUMEN

"Candidatus Microthrix" bacteria are deeply branching filamentous actinobacteria which occur at the water-air interface of biological wastewater treatment plants, where they are often responsible for foaming and bulking. Here, we report the first draft genome sequence of a strain from this genus: "Candidatus Microthrix parvicella" strain Bio17-1.


Asunto(s)
Actinobacteria/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Genoma Bacteriano , Análisis de Secuencia de ADN , Actinobacteria/aislamiento & purificación , Actinobacteria/metabolismo , Ácidos Grasos/metabolismo , Datos de Secuencia Molecular , Aguas Residuales/microbiología
15.
Emerg Infect Dis ; 18(11): e1, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23092707

RESUMEN

The rapid advancement of genome technologies holds great promise for improving the quality and speed of clinical and public health laboratory investigations and for decreasing their cost. The latest generation of genome DNA sequencers can provide highly detailed and robust information on disease-causing microbes, and in the near future these technologies will be suitable for routine use in national, regional, and global public health laboratories. With additional improvements in instrumentation, these next- or third-generation sequencers are likely to replace conventional culture-based and molecular typing methods to provide point-of-care clinical diagnosis and other essential information for quicker and better treatment of patients. Provided there is free-sharing of information by all clinical and public health laboratories, these genomic tools could spawn a global system of linked databases of pathogen genomes that would ensure more efficient detection, prevention, and control of endemic, emerging, and other infectious disease outbreaks worldwide.


Asunto(s)
Genómica , Difusión de la Información , Enfermedades Transmisibles/diagnóstico , Bases de Datos Factuales , Salud Global , Humanos , Internet , Vigilancia de la Población
16.
J Clin Microbiol ; 50(6): 2059-62, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22442327

RESUMEN

Melioidosis is an emerging infectious disease caused by the soil bacterium Burkholderia pseudomallei. In diagnostic and forensic settings, molecular detection assays need not only high sensitivity with low limits of detection but also high specificity. In a direct comparison of published and newly developed TaqMan PCR assays, we found the TTS1-orf2 assay to be superior in detecting B. pseudomallei directly from clinical specimens. The YLF/BTFC multiplex assay (targeting the Yersinia-like fimbrial/Burkholderia thailandensis-like flagellum and chemotaxis region) also showed high diagnostic sensitivity and provides additional information on possible geographic origin.


Asunto(s)
Técnicas Bacteriológicas/métodos , Burkholderia pseudomallei/aislamiento & purificación , Melioidosis/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Reacción en Cadena de la Polimerasa/métodos , Burkholderia pseudomallei/genética , Humanos , Sensibilidad y Especificidad
17.
BMC Microbiol ; 12: 12, 2012 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-22251616

RESUMEN

BACKGROUND: Rates of resistance to macrolide antibiotics in Streptococcus pneumoniae are rising around the world due to the spread of mobile genetic elements harboring mef(E) and erm(B) genes and post-vaccine clonal expansion of strains that carry them. RESULTS: Characterization of 592 clinical isolates collected in Arizona over a 10 year period shows 23.6% are macrolide resistant. The largest portion of the macrolide-resistant population, 52%, is dual mef(E)/erm(B)-positive. All dual-positive isolates are multidrug-resistant clonal lineages of Taiwan19F-14, mostly multilocus sequence type 320, carrying the recently described transposon Tn2010. The remainder of the macrolide resistant S. pneumoniae collection includes 31% mef(E)-positive, and 9% erm(B)-positive strains. CONCLUSIONS: The dual-positive, multidrug-resistant S. pneumoniae clones have likely expanded by switching to non-vaccine serotypes after the heptavalent pneumococcal conjugate vaccine release, and their success limits therapy options. This upsurge could have a considerable clinical impact in Arizona.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Macrólidos/farmacología , Infecciones Neumocócicas/epidemiología , Streptococcus pneumoniae/clasificación , Streptococcus pneumoniae/efectos de los fármacos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Arizona/epidemiología , Niño , Preescolar , Análisis por Conglomerados , Elementos Transponibles de ADN , Femenino , Genes Bacterianos , Genotipo , Humanos , Lactante , Masculino , Persona de Mediana Edad , Epidemiología Molecular , Tipificación de Secuencias Multilocus , Infecciones Neumocócicas/microbiología , Reacción en Cadena de la Polimerasa , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/aislamiento & purificación , Adulto Joven
18.
Sci Am ; 316(4): 70-75, 2017 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-28296844
19.
PLoS One ; 17(10): e0273273, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36223396

RESUMEN

Francisella tularensis, the bacterium that causes the zoonosis tularemia, and its genetic near neighbor species, can be difficult or impossible to cultivate from complex samples. Thus, there is a lack of genomic information for these species that has, among other things, limited the development of robust detection assays for F. tularensis that are both specific and sensitive. The objective of this study was to develop and validate approaches to capture, enrich, sequence, and analyze Francisella DNA present in DNA extracts generated from complex samples. RNA capture probes were designed based upon the known pan genome of F. tularensis and other diverse species in the family Francisellaceae. Probes that targeted genomic regions also present in non-Francisellaceae species were excluded, and probes specific to particular Francisella species or phylogenetic clades were identified. The capture-enrichment system was then applied to diverse, complex DNA extracts containing low-level Francisella DNA, including human clinical tularemia samples, environmental samples (i.e., animal tissue and air filters), and whole ticks/tick cell lines, which was followed by sequencing of the enriched samples. Analysis of the resulting data facilitated rigorous and unambiguous confirmation of the detection of F. tularensis or other Francisella species in complex samples, identification of mixtures of different Francisella species in the same sample, analysis of gene content (e.g., known virulence and antimicrobial resistance loci), and high-resolution whole genome-based genotyping. The benefits of this capture-enrichment system include: even very low target DNA can be amplified; it is culture-independent, reducing exposure for research and/or clinical personnel and allowing genomic information to be obtained from samples that do not yield isolates; and the resulting comprehensive data not only provide robust means to confirm the presence of a target species in a sample, but also can provide data useful for source attribution, which is important from a genomic epidemiology perspective.


Asunto(s)
Antiinfecciosos , Francisella tularensis , Tularemia , Animales , ADN Bacteriano/genética , Francisella tularensis/genética , Genómica , Humanos , Filogenia , ARN , Tularemia/microbiología
20.
Nat Commun ; 13(1): 2576, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35546150

RESUMEN

Engineered natural killer (NK) cells represent a promising option for immune therapy option due to their immediate availability in allogeneic settings. Severe acute diseases, such as COVID-19, require targeted and immediate intervention. Here we show engineering of NK cells to express (1) soluble interleukin-15 (sIL15) for enhancing their survival and (2) a chimeric antigen receptor (CAR) consisting of an extracellular domain of ACE2, targeting the spike protein of SARS-CoV-2. These CAR NK cells (mACE2-CAR_sIL15 NK cells) bind to VSV-SARS-CoV-2 chimeric viral particles as well as the recombinant SARS-CoV-2 spike protein subunit S1 leading to enhanced NK cell production of TNF-α and IFN-γ and increased in vitro and in vivo cytotoxicity against cells expressing the spike protein. Administration of mACE2-CAR_sIL15 NK cells maintains body weight, reduces viral load, and prolongs survival of transgenic mice expressing human ACE2 upon infection with live SARS-CoV-2. These experiments, and the capacity of mACE2-CAR_sIL15 NK cells to retain their activity following cryopreservation, demonstrate their potential as an allogeneic off-the-shelf therapy for COVID-19 patients who are faced with limited treatment options.


Asunto(s)
COVID-19 , Receptores Quiméricos de Antígenos , Enzima Convertidora de Angiotensina 2 , Animales , COVID-19/terapia , Humanos , Interleucina-15/metabolismo , Células Asesinas Naturales , Ratones , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA