Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Microb Pathog ; : 106980, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39326805

RESUMEN

Avian migration is an intrinsic biological phenomenon that involves trans-boundary movements to evade adverse ecological circumstances. During migration, avian gut bacterial taxa may serve as a potential source of bacterial dissemination via fecal contamination at stop-over sites. Therefore, bacterial taxa composition as well as diversities were investigated employing 16S rRNA sequencing in fecal samples collected from flocks of seven migratory avian species visiting southern districts of Khyber Pakhtunkhwa, Pakistan. The analysis revealed that Grus virgo exhibits the highest alpha diversity, followed by Aythya ferina while G. grus reflects lowest diversity among all the migratory avian fecal samples. The findings depicted significant variations in the bacterial beta diversities of migratory avifauna. At phylum level, Firmicutes, Proteobacteria, and Actinobacteriota showed the highest relative abundance in Plegadis falcinellus, Chlamydotis undulata and Aythya ferina respectively. Further exploration within phyla elucidates finer-scale taxonomic differences at the family and genus levels. This study identified potential pathogenic bacteria such as Staphylococcus, Streptococcus, Enterococcus, Proteus, Clostridium sensu stricto 1, Fusobacterium and Escherichia that offers valuable insight into the microbiological hazards associated with migratory birds. Although pathogenicity was not directly assessed, the observed relative abundance of opportunistic bacterial genera suggests continuous surveillance of gut bacterial community during migration to safeguard avian biodiversity and mitigate escalating threats of infection emergence and dissemination.

2.
Environ Sci Pollut Res Int ; 30(53): 114525-114534, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37861829

RESUMEN

The contamination of saltwater by toxic heavy metals has become a worldwide problem. The application of phytoextraction to remove these pollutants seems to be more efficient and cheaper compared to physicochemical methods. In this work, we evaluated the potential of two halophyte species to accumulate cadmium and zinc from contaminated water. Seedlings of Carpobrotus edulis L. and Sesuvium portulacastrum L. were cultivated during 1 month on pots filled with saltwater (200 mM NaCl) containing different concentrations of Cd2+ (0, 50, 100 µM) and of Zn2+ (0, 200, and 400 µM) applied separately. Results showed that both halophytes were more resistant to Zn2+ than Cd2+ and that Sesuvium better tolerates the two metals. Zn2+ and Cd2+ concentrations in the shoot as well as the values of translocation factors suggest that these species are able to absorb and to concentrate Cd2+ and Zn2+ in their roots and shoots. Hence, after 1 month of culture on 50 µM Cd2+, plants were able to extract 31% and 21% of Cd, respectively, in S. portulacastrum and C. edulis. The Zn-extraction efficiency was less important and reached 18 and 19%, respectively, in S. portulacastrum and C. edulis cultivated under 200 µM Zn2+. Given together, data demonstrate the efficiency of the use of halophytes, especially S. portulacastrum, to extract Zn2+ and Cd2+ from salt wastewater.


Asunto(s)
Aizoaceae , Contaminantes del Suelo , Plantas Tolerantes a la Sal , Cadmio/toxicidad , Cloruro de Sodio , Zinc , Biodegradación Ambiental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA