Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Anim Ecol ; 81(2): 341-51, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22007680

RESUMEN

1. The assessment of species extinction risk has been well established for some time now. Assessing the potential for recovery in endangered species is however much more challenging, because complementary approaches are required to detect reliable signals of positive trends. 2. This study combines genetics, demography and behavioural data at three different time-scales to assess historical and recent population changes and evidence of reproductive synchrony in a small population of olive ridley sea turtle Lepidochelys olivacea. Lepidochelys is considered as the most extraordinary example of reproductive synchrony in reptiles, yet to date, it has only been reported in large populations. 3. Using Bayesian coalescent-based models on microsatellite nuclear DNA variability, we demonstrate that effective population size in olive ridleys nesting in French Guiana has dramatically declined by 99% over the last 20 centuries. This low current population size is further illustrated by the absence of genetic mitochondrial DNA diversity in the present nesting population. Yet, monitoring of nesting sites in French Guiana suggests a possible recovery of the population over the last decade. 4. Satellite telemetry shows that over the first 14 days of their 28-days inter-nesting interval, i.e. when eggs maturation is likely to occur, gravid females disperse over the continental shelf. They then gather together with a striking spatiotemporal consistency close to the nesting site, where they later emerge for their second nesting event. 5. Our results therefore suggest that reproductive synchrony also occurs in small populations. Olive ridleys may ensure this synchrony by adjusting the duration of the second half of their inter-nesting interval prior to landing, possibly through social mediation. 6. Such reproductive synchrony may be related to the maintenance of some species-specific strategy despite former collapse and may contribute to the present population recovery. The gregarious behaviour of reproductive individuals close to shore where human-induced perturbations occur is however a cause for conservation concern for this still poorly known species.


Asunto(s)
Variación Genética , Comportamiento de Nidificación , Tortugas/fisiología , Animales , Teorema de Bayes , Núcleo Celular/genética , Citocromos b/genética , ADN Mitocondrial/genética , Femenino , Guyana Francesa , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Movimiento , Dinámica Poblacional , Tecnología de Sensores Remotos , Tortugas/genética
2.
PLoS One ; 10(9): e0137340, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26398528

RESUMEN

In response to seasonality and spatial segregation of resources, sea turtles undertake long journeys between their nesting sites and foraging grounds. While satellite tracking has made it possible to outline their migration routes, we still have little knowledge of how they select their foraging grounds and adapt their migration to dynamic environmental conditions. Here, we analyzed the trajectories and diving behavior of 19 adult green turtles (Chelonia mydas) during their post-nesting migration from French Guiana and Suriname to their foraging grounds off the coast of Brazil. First Passage Time analysis was used to identify foraging areas located off Ceará state of Brazil, where the associated habitat corresponds to favorable conditions for seagrass growth, i.e. clear and shallow waters. The dispersal and diving patterns of the turtles revealed several behavioral adaptations to the strong hydrodynamic processes induced by both the North Brazil current and the Amazon River plume. All green turtles migrated south-eastward after the nesting season, confirming that they coped with the strong counter North Brazil current by using a tight corridor close to the shore. The time spent within the Amazon plume also altered the location of their feeding habitats as the longer individuals stayed within the plume, the sooner they initiated foraging. The green turtles performed deeper and shorter dives while crossing the mouth of the Amazon, a strategy which would help turtles avoid the most turbulent upper surface layers of the plume. These adjustments reveal the remarkable plasticity of this green turtle population when reducing energy costs induced by migration.


Asunto(s)
Migración Animal , Tortugas/fisiología , Animales , Océano Atlántico , Buceo , Ecosistema , Femenino , Herbivoria , Hidrodinámica , Comportamiento de Nidificación , Ríos
3.
PLoS One ; 5(11): e13908, 2010 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-21085472

RESUMEN

BACKGROUND: Sea turtles are long-distance migrants with considerable behavioural plasticity in terms of migratory patterns, habitat use and foraging sites within and among populations. However, for the most widely migrating turtle, the leatherback turtle Dermochelys coriacea, studies combining data from individuals of different populations are uncommon. Such studies are however critical to better understand intra- and inter-population variability and take it into account in the implementation of conservation strategies of this critically endangered species. Here, we investigated the movements and diving behaviour of 16 Atlantic leatherback turtles from three different nesting sites and one foraging site during their post-breeding migration to assess the potential determinants of intra- and inter-population variability in migratory patterns. METHODOLOGY/PRINCIPAL FINDINGS: Using satellite-derived behavioural and oceanographic data, we show that turtles used Temporary Residence Areas (TRAs) distributed all around the Atlantic Ocean: 9 in the neritic domain and 13 in the oceanic domain. These TRAs did not share a common oceanographic determinant but on the contrary were associated with mesoscale surface oceanographic features of different types (i.e., altimetric features and/or surface chlorophyll a concentration). Conversely, turtles exhibited relatively similar horizontal and vertical behaviours when in TRAs (i.e., slow swimming velocity/sinuous path/shallow dives) suggesting foraging activity in these productive regions. Migratory paths and TRAs distribution showed interesting similarities with the trajectories of passive satellite-tracked drifters, suggesting that the general dispersion pattern of adults from the nesting sites may reflect the extent of passive dispersion initially experienced by hatchlings. CONCLUSIONS/SIGNIFICANCE: Intra- and inter-population behavioural variability may therefore be linked with initial hatchling drift scenarios and be highly influenced by environmental conditions. This high degree of behavioural plasticity in Atlantic leatherback turtles makes species-targeted conservation strategies challenging and stresses the need for a larger dataset (>100 individuals) for providing general recommendations in terms of conservation.


Asunto(s)
Migración Animal/fisiología , Buceo/fisiología , Natación/fisiología , Tortugas/fisiología , Animales , Océano Atlántico , Ecosistema , Femenino , Geografía , Masculino , Actividad Motora/fisiología , Comportamiento de Nidificación/fisiología , Oceanografía , Comunicaciones por Satélite
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA