Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(24): e2401686121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38838019

RESUMEN

S-layers are crystalline arrays found on bacterial and archaeal cells. Lactobacillus is a diverse family of bacteria known especially for potential gut health benefits. This study focuses on the S-layer proteins from Lactobacillus acidophilus and Lactobacillus amylovorus common in the mammalian gut. Atomic resolution structures of Lactobacillus S-layer proteins SlpA and SlpX exhibit domain swapping, and the obtained assembly model of the main S-layer protein SlpA aligns well with prior electron microscopy and mutagenesis data. The S-layer's pore size suggests a protective role, with charged areas aiding adhesion. A highly similar domain organization and interaction network are observed across the Lactobacillus genus. Interaction studies revealed conserved binding areas specific for attachment to teichoic acids. The structure of the SlpA S-layer and the suggested incorporation of SlpX as well as its interaction with teichoic acids lay the foundation for deciphering its role in immune responses and for developing effective treatments for a variety of infectious and bacteria-mediated inflammation processes, opening opportunities for targeted engineering of the S-layer or lactobacilli bacteria in general.


Asunto(s)
Glicoproteínas de Membrana , Ácidos Teicoicos , Ácidos Teicoicos/metabolismo , Ácidos Teicoicos/química , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/química , Lactobacillus/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Modelos Moleculares , Lactobacillus acidophilus/metabolismo , Lactobacillus acidophilus/genética
2.
Allergy ; 79(4): 1001-1017, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37855043

RESUMEN

BACKGROUND: IgE cross-sensitization to major birch pollen allergen Bet v 1 and pathogenesis-related (PR10) plant food allergens is responsible for the pollen-food allergy syndrome. METHODS: We designed a recombinant protein, AB-PreS, consisting of non-allergenic peptides derived from the IgE-binding sites of Bet v 1 and the cross-reactive apple allergen, Mal d 1, fused to the PreS domain of HBV surface protein as immunological carrier. AB-PreS was expressed in E. coli and purified by chromatography. The allergenic and inflammatory activity of AB-PreS was tested using basophils and PBMCs from birch pollen allergic patients. The ability of antibodies induced by immunization of rabbits with AB-PreS and birch pollen extract-based vaccines to inhibit allergic patients IgE binding to Bet v 1 and Mal d 1 was assessed by ELISA. RESULTS: IgE-binding experiments and basophil activation test revealed the hypoallergenic nature of AB-PreS. AB-PreS induced lower T-cell activation and inflammatory cytokine production in cultured PBMCs from allergic patients. IgG antibodies induced by five injections with AB-PreS inhibited allergic patients' IgE binding to Bet v 1 and Mal d 1 better than did IgG induced by up to 30 injections of six licensed birch pollen allergen extract-based vaccines. Additionally, immunization with AB-PreS induced HBV-specific antibodies potentially protecting from infection with HBV. CONCLUSION: The recombinant AB-PreS-based vaccine is hypoallergenic and superior over currently registered allergen extract-based vaccines regarding the induction of blocking antibodies to Bet v 1 and Mal d 1 in animals.


Asunto(s)
Hipersensibilidad a los Alimentos , Malus , Animales , Humanos , Conejos , Betula , Proteínas Recombinantes de Fusión , Polen , Escherichia coli , Antígenos de Plantas , Inmunoglobulina E , Alérgenos , Hipersensibilidad a los Alimentos/prevención & control , Vacunas Sintéticas , Inmunoglobulina G , Proteínas de Plantas
3.
J Allergy Clin Immunol ; 150(4): 920-930, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35738928

RESUMEN

BACKGROUND: Worldwide, pollen of the weed mugwort (Artemisiavulgaris) is a major cause of severe respiratory allergy, with its major allergen, Art v 1, being the key pathogenic molecule for millions of patients. Humanized mice transgenic for a human T-cell receptor specific for the major Art v 1 T-cell epitope and the corresponding HLA have been made. OBJECTIVE: We sought to characterize IgE epitopes of Art v 1-sensitized patients and humanized mice for molecular immunotherapy of mugwort allergy. METHODS: Four overlapping peptides incorporating surface-exposed amino acids representing the full-length Art v 1 sequence were synthesized and used to search for IgE reactivity to sequential epitopes. For indirect mapping, peptide-specific rabbit antibodies were raised to block IgE against surface-exposed epitopes on folded Art v 1. IgE reactivity and basophil activation studies were performed in clinically defined mugwort-allergic patients. Secondary structure of recombinant (r) Art v 1 and peptides was determined by circular dichroism spectroscopy. RESULTS: Mugwort-allergic patients and humanized mice sensitized by allergen inhalation showed IgE reactivity and/or basophil activation mainly to folded, complete Art v 1 but not to unfolded, sequential peptide epitopes. Blocking of allergic patients' IgE with peptide-specific rabbit antisera identified a hitherto unknown major conformational IgE binding site in the C-terminal Art v 1 domain. CONCLUSIONS: Identification of the new major conformational IgE binding site on Art v 1, which can be blocked with IgG raised against non-IgE reactive Art v 1 peptides, is an important basis for the development of a hypoallergenic peptide vaccine for mugwort allergy.


Asunto(s)
Artemisia , Hipersensibilidad , Alérgenos , Aminoácidos , Animales , Antígenos de Plantas , Artemisia/química , Epítopos de Linfocito T , Humanos , Sueros Inmunes , Inmunoglobulina E , Inmunoglobulina G , Ratones , Péptidos , Proteínas de Plantas , Conejos
4.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38069052

RESUMEN

More than 10% of the world's population suffers from an immunoglobulin E (IgE)-mediated allergy to cats which is accompanied mainly by respiratory symptoms such as rhinitis and asthma. Several cat allergen molecules have been identified, but their allergenic activity has not been investigated in depth. Purified cat allergen molecules (Fel d 1, Fel d 2, Fel d 3, Fel d 4, Fel d 6, Fel d 7 and Fel d 8) were characterized via mass spectrometry and circular dichroism spectroscopy regarding their molecular mass and fold, respectively. Cat-allergen-specific IgE levels were quantified via ImmunoCAP measurements in IgE-sensitized subjects with (n = 37) and without (n = 20) respiratory symptoms related to cat exposure. The allergenic activity of the cat allergens was investigated by loading patients' IgE onto rat basophils expressing the human FcεRI receptor and studying the ability of different allergen concentrations to induce ß-hexosaminidase release. Purified and folded cat allergens with correct masses were obtained. Cat-allergen-specific IgE levels were much higher in patients with a respiratory allergy than in patients without a respiratory allergy. Fel d 1, Fel d 2, Fel d 4 and Fel d 7 bound the highest levels of specific IgE and already-induced basophil degranulation at hundred-fold-lower concentrations than the other allergens. Fel d 1, Fel d 4 and Fel d 7 were recognized by more than 65% of patients with a respiratory allergy, whereas Fel d 2 was recognized by only 30%. Therefore, in addition to the major cat allergen Fel d 1, Fel d 4 and Fel d 7 should also be considered to be important allergens for the diagnosis and specific immunotherapy of cat allergy.


Asunto(s)
Asma , Hipersensibilidad , Humanos , Ratas , Animales , Alérgenos/química , Hipersensibilidad/diagnóstico , Inmunoglobulina E/metabolismo , Basófilos
5.
Allergy ; 77(5): 1534-1544, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34695231

RESUMEN

BACKGROUND: The shrimp Litopenaeus vannamei is an important source of food allergens but its allergenic repertoire is poorly characterized. Cross-reactivity between crustacean and mites has been reported, with tropomyosin, the most relevant allergen involved. The aim of this study was to investigate the structural and immunological properties of a recombinant Fatty Acid Binding Protein (FABP) family from L. vannamei (LvFABP). METHODS: ELISA, skin prick test (SPT) and basophil activation assays were performed to determine IgE reactivity and allergenic activity of LvFABP. LC-MS/MS and Circular Dichroism experiments were done for structural analysis. B-cell epitope mapping with overlapping peptides, and cross-inhibition studies using human sera were done to identify antigenic regions and cross-reactivity. RESULTS: The recombinant LvFABP bound serum IgE from 27% of 36 shrimp allergic patients and showed allergenic activity when tested for basophil activation and SPT in a selected number of them. CD-spectroscopy of LvFABP revealed that the protein is folded with a secondary structure composed of mainly ß-strands and a smaller fraction of α helices. This is consistent with molecular modelling results, which exhibit a typical ß barrel fold with two α-helices and ten ß-strands. Epitope mapping identified two IgE-binding antigenic regions and inhibition assays found high cross-reactivity between LvFABP and Blo t 13, mediated by the antigenic region involving amino acids 54 to 72. CONCLUSIONS: Our results show that LvFABP is a shrimp allergen that cross reacts with the house dust mite allergen Blo t 13 and has allergenic activity, which suggest that it could be clinically relevant in case of shellfish allergy. This new allergen, named Lit v 13, will also help to understand basic mechanisms of sensitization to shrimp.


Asunto(s)
Hipersensibilidad a los Alimentos , Penaeidae , Alérgenos , Animales , Cromatografía Liquida , Reacciones Cruzadas , Proteínas de Unión a Ácidos Grasos , Hipersensibilidad a los Alimentos/diagnóstico , Humanos , Inmunoglobulina E , Espectrometría de Masas en Tándem
6.
Allergy ; 77(8): 2431-2445, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35357709

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the ongoing global COVID-19 pandemic. One possibility to control the pandemic is to induce sterilizing immunity through the induction and maintenance of neutralizing antibodies preventing SARS-CoV-2 from entering human cells to replicate in. METHODS: We report the construction and in vitro and in vivo characterization of a SARS-CoV-2 subunit vaccine (PreS-RBD) based on a structurally folded recombinant fusion protein consisting of two SARS-CoV-2 Spike protein receptor-binding domains (RBD) fused to the N- and C-terminus of hepatitis B virus (HBV) surface antigen PreS to enable the two unrelated proteins serving as immunologic carriers for each other. RESULTS: PreS-RBD, but not RBD alone, induced a robust and uniform RBD-specific IgG response in rabbits. Currently available genetic SARS-CoV-2 vaccines induce mainly transient IgG1 responses in vaccinated subjects whereas the PreS-RBD vaccine induced RBD-specific IgG antibodies consisting of an early IgG1 and sustained IgG4 antibody response in a SARS-CoV-2 naive subject. PreS-RBD-specific IgG antibodies were detected in serum and mucosal secretions, reacted with SARS-CoV-2 variants, including the omicron variant of concern and the HBV receptor-binding sites on PreS of currently known HBV genotypes. PreS-RBD-specific antibodies of the immunized subject more potently inhibited the interaction of RBD with its human receptor ACE2 and their virus-neutralizing titers (VNTs) were higher than median VNTs in a random sample of healthy subjects fully immunized with registered SARS-CoV-2 vaccines or in COVID-19 convalescent subjects. CONCLUSION: The PreS-RBD vaccine has the potential to serve as a combination vaccine for inducing sterilizing immunity against SARS-CoV-2 and HBV by stopping viral replication through the inhibition of cellular virus entry.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Humanos , Inmunoglobulina G , Pandemias/prevención & control , Conejos , Glicoproteína de la Espiga del Coronavirus/inmunología
7.
Allergy ; 77(1): 230-242, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34453317

RESUMEN

BACKGROUND: The determinants of successful humoral immune response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are of critical importance for the design of effective vaccines and the evaluation of the degree of protective immunity conferred by exposure to the virus. As novel variants emerge, understanding their likelihood of suppression by population antibody repertoires has become increasingly important. METHODS: In this study, we analyzed the SARS-CoV-2 polyclonal antibody response in a large population of clinically well-characterized patients after mild and severe COVID-19 using a panel of microarrayed structurally folded and unfolded SARS-CoV-2 proteins, as well as sequential peptides, spanning the surface spike protein (S) and the receptor-binding domain (RBD) of the virus. RESULTS: S- and RBD-specific antibody responses were dominated by immunoglobulin G (IgG), mainly IgG1 , and directed against structurally folded S and RBD and three distinct peptide epitopes in S2. The virus neutralization activity of patients´ sera was highly correlated with IgG antibodies specific for conformational but not sequential RBD epitopes and their ability to prevent RBD binding to its human receptor angiotensin-converting enzyme 2 (ACE2). Twenty percent of patients selectively lacked RBD-specific IgG. Only immunization with folded, but not with unfolded RBD, induced antibodies against conformational epitopes with high virus-neutralizing activity. Conformational RBD epitopes required for protection do not seem to be altered in the currently emerging virus variants. CONCLUSION: These results are fundamental for estimating the protective activity of antibody responses after natural infection or vaccination and for the design of vaccines, which can induce high levels of SARS-CoV-2-neutralizing antibodies conferring sterilizing immunity.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Epítopos , Humanos , Glicoproteína de la Espiga del Coronavirus/genética
8.
Genes Dev ; 28(21): 2381-93, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25301781

RESUMEN

Cleavage and polyadenylation specificity factor (CPSF) is the central component of the 3' processing machinery for polyadenylated mRNAs in metazoans: CPSF recognizes the polyadenylation signal AAUAAA, providing sequence specificity in both pre-mRNA cleavage and polyadenylation, and catalyzes pre-mRNA cleavage. Here we show that of the seven polypeptides that have been proposed to constitute CPSF, only four (CPSF160, CPSF30, hFip1, and WDR33) are necessary and sufficient to reconstitute a CPSF subcomplex active in AAUAAA-dependent polyadenylation, whereas CPSF100, CPSF73, and symplekin are dispensable. WDR33 is required for binding of reconstituted CPSF to AAUAAA-containing RNA and can be specifically UV cross-linked to such RNAs, as can CPSF30. Transcriptome-wide identification of WDR33 targets by photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation (PAR-CLIP) showed that WDR33 binds in and very close to the AAUAAA signal in vivo with high specificity. Thus, our data indicate that the large CPSF subunit participating in recognition of the polyadenylation signal is WDR33 and not CPSF160, as suggested by previous studies.


Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Proteínas Nucleares/metabolismo , Procesamiento de Término de ARN 3'/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células HEK293 , Humanos , Poliadenilación , Unión Proteica/genética , Subunidades de Proteína/metabolismo
9.
Int J Mol Sci ; 23(9)2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35563505

RESUMEN

Rhinoviruses (RVs) are major causes of the common cold, but they can also trigger exacerbations of asthma. More than 160 different RV strains exist and can be classified into three genetic species (RV-A, RV-B and RV-C) which bind to different receptors on human cells including intracellular adhesion molecule 1 (ICAM-1), the low-density lipoprotein receptor (LDLR) or the cadherin-related family member 3 (CDHR3). Epitopes located in the RV capsid have mainly been determined for RV2, a minor-group RV-A strain binding to LDLR, and for RV14, a major-group RV-B strain binding to ICAM-1. In order to study epitopes involved in the neutralization of RV89, an ICAM-1-binding RV-A strain which is highly different from RV2 and RV14 in terms of receptor specificity and sequence, respectively, we analyzed the specificity and epitopes of a highly neutralizing antiserum using recombinantly produced RV89 capsid proteins (VP1, VP2, VP3 and VP4), recombinant fragments and synthetic overlapping peptides thereof. We found that the antiserum which neutralized in vitro RV89 infection up to a dilution of 1:24,000 reacted with the capsid proteins VP1 and VP2 but not with VP3 and VP4. The neutralizing antibodies recognized recombinant fragments comprising approximately 100 amino acids of the N- and C-terminus of VP1 and the middle part of VP2, in particular, three peptides which, according to molecular modeling based on the three-dimensional structure of RV16, were surface-exposed on the viral capsid. Two recombinant fusion proteins containing the identified peptides fused to hepatitis B (HBV)-derived preS as a carrier protein induced upon immunization of rabbits antibodies capable of neutralizing in vitro RV89 infections. Interestingly, the virus-neutralizing epitopes determined for RV89 corresponded to those determined for minor-group RV2 binding to LDL and major-group RV14 belonging to the RV-B species, which are highly different from RV89. Our results indicate that highly different RV strains, even when reacting with different receptors, seem to engage similar parts of their capsid in the infection process. These results may be important for the design of active and passive immunization strategies for RV.


Asunto(s)
Infecciones por Enterovirus , Rhinovirus , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Proteínas de la Cápside/química , Epítopos , Molécula 1 de Adhesión Intercelular/metabolismo , Péptidos , Conejos
10.
Chembiochem ; 22(4): 652-656, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33090643

RESUMEN

Broad substrate tolerance and excellent regioselectivity, as well as independence from sensitive cofactors have established benzoic acid decarboxylases from microbial sources as efficient biocatalysts. Robustness under process conditions makes them particularly attractive for preparative-scale applications. The divalent metal-dependent enzymes are capable of catalyzing the reversible non-oxidative (de)carboxylation of a variety of electron-rich (hetero)aromatic substrates analogously to the chemical Kolbe-Schmitt reaction. Elemental mass spectrometry supported by crystal structure elucidation and quantum chemical calculations verified the presence of a catalytically relevant Mg2+ complexed in the active site of 2,3-dihydroxybenoic acid decarboxylase from Aspergillus oryzae (2,3-DHBD_Ao). This unique example with respect to the nature of the metal is in contrast to mechanistically related decarboxylases, which generally have Zn2+ or Mn2+ as the catalytically active metal.


Asunto(s)
Aspergillus oryzae/enzimología , Carboxiliasas/química , Carboxiliasas/metabolismo , Hidroxibenzoatos/metabolismo , Magnesio/metabolismo , Catálisis , Cinética , Magnesio/química , Especificidad por Sustrato , Termodinámica
11.
Nucleic Acids Res ; 47(W1): W496-W501, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31066444

RESUMEN

The specific interaction of allergens with IgE antibodies and the allergen mediated cross-linking of receptor-bound IgE are key events of allergic diseases. The elucidation of the IgE binding sites (the epitopes) on the allergen surface is an important goal of allergy research. Only few allergen-specific IgE epitopes have been determined experimentally to date. Epitope prediction methods represent a viable alternative to experimental methods and have worked well with linear epitopes. However, as most IgE epitopes are of conformational and/or discontinuous nature sequence based prediction methods have had limited success in these cases. Here, we present the web server of the program SPADE (https://spade.uni-graz.at), which is the server implementation of a previously published program (1). In this approach we utilize the structural homology of cross-reactive allergens combined with the immunological cross-reactivity data for the discrimination of putative IgE-binding sites from non-cross-reactive surface patches. The method, although predictive, does not rely on machine-learning algorithms and does not require training data. The SPADE server features an easy-to-use interface, an automated pipeline consisting of third-party, as well as own, newly developed routines and a comprehensive output page.


Asunto(s)
Alérgenos/química , Epítopos/química , Inmunoglobulina E/química , Programas Informáticos , Alérgenos/inmunología , Epítopos/inmunología , Inmunoglobulina E/inmunología , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/inmunología , Internet
12.
J Allergy Clin Immunol ; 145(3): 958-967.e5, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31775017

RESUMEN

BACKGROUND: CD23 mediates IgE-facilitated allergen presentation and subsequent allergen-specific T-cell activation in allergic patients. OBJECTIVE: We sought to investigate key factors regulating IgE-facilitated allergen presentation through CD23 and subsequent T-cell activation. METHODS: To study T-cell activation by free allergens and different types of IgE-Bet v 1 complexes, we used a molecular model based on monoclonal human Bet v 1-specific IgE, monomeric and oligomeric Bet v 1 allergen, an MHC-matched CD23-expressing B-cell line, and a T-cell line expressing a human Bet v 1-specific T-cell receptor. The ability to cross-link Fcε receptors of complexes consisting of either IgE and monomeric Bet v 1 or IgE and oligomeric Bet v 1 was studied in human FcεRI-expressing basophils. T-cell proliferation by monomeric or oligomeric Bet v 1, which cross-links Fcε receptors to a different extent, was studied in allergic patients' PBMCs with and without CD23-expressing B cells. RESULTS: In our model non-cross-linking IgE-Bet v 1 monomer complexes, as well as cross-linking IgE-Bet v 1 oligomer complexes, induced T-cell activation, which was dependent on the concentration of specific IgE. However, T-cell activation by cross-linking IgE-Bet v 1 oligomer complexes was approximately 125-fold more efficient. Relevant T-cell proliferation occurred in allergic patients' PBMCs only in the presence of B cells, and its magnitude depended on the ability of IgE-Bet v 1 complexes to cross-link CD23. CONCLUSION: The extent of CD23-mediated T-cell activation depends on the concentration of allergen-specific IgE and the cross-linking ability of IgE-allergen complexes.


Asunto(s)
Presentación de Antígeno/inmunología , Antígenos de Plantas/inmunología , Inmunoglobulina E/inmunología , Activación de Linfocitos/inmunología , Receptores de IgE/inmunología , Linfocitos T/inmunología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Rinitis Alérgica Estacional/inmunología
13.
RNA ; 24(12): 1721-1737, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30139799

RESUMEN

Cleavage factor II (CF II) is a poorly characterized component of the multiprotein complex catalyzing 3' cleavage and polyadenylation of mammalian mRNA precursors. We have reconstituted CF II as a heterodimer of hPcf11 and hClp1. The heterodimer is active in partially reconstituted cleavage reactions, whereas hClp1 by itself is not. Pcf11 moderately stimulates the RNA 5' kinase activity of hClp1; the kinase activity is dispensable for RNA cleavage. CF II binds RNA with nanomolar affinity. Binding is mediated mostly by the two zinc fingers in the C-terminal region of hPcf11. RNA is bound without pronounced sequence-specificity, but extended G-rich sequences appear to be preferred. We discuss the possibility that CF II contributes to the recognition of cleavage/polyadenylation substrates through interaction with G-rich far-downstream sequence elements.


Asunto(s)
Complejos Multiproteicos/química , Proteínas Nucleares/química , Fosfotransferasas/química , Factores de Transcripción/química , Factores de Escisión y Poliadenilación de ARNm/química , Sitios de Unión , Complejos Multiproteicos/genética , Proteínas Nucleares/genética , Fosfotransferasas/genética , Poliadenilación/genética , Unión Proteica , Multimerización de Proteína , Precursores del ARN/química , Precursores del ARN/genética , Homología de Secuencia de Aminoácido , Factores de Transcripción/genética , Factores de Escisión y Poliadenilación de ARNm/genética
14.
Nucleic Acids Res ; 46(17): 9201-9219, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30060171

RESUMEN

The dissemination of multi-resistant bacteria represents an enormous burden on modern healthcare. Plasmid-borne conjugative transfer is the most prevalent mechanism, requiring a type IV secretion system that enables bacteria to spread beneficial traits, such as resistance to last-line antibiotics, among different genera. Inc18 plasmids, like the Gram-positive broad host-range plasmid pIP501, are substantially involved in propagation of vancomycin resistance from Enterococci to methicillin-resistant strains of Staphylococcus aureus. Here, we identified the small cytosolic protein TraN as a repressor of the pIP501-encoded conjugative transfer system, since deletion of traN resulted in upregulation of transfer factors, leading to highly enhanced conjugative transfer. Furthermore, we report the complex structure of TraN with DNA and define the exact sequence of its binding motif. Targeting this protein-DNA interaction might represent a novel therapeutic approach against the spreading of antibiotic resistances.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Conjugación Genética , ADN Bacteriano/química , Enterococcus faecalis/genética , Proteínas de Escherichia coli/química , Plásmidos/química , Sistemas de Secreción Tipo IV/genética , Secuencia de Aminoácidos , Antibacterianos/farmacología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Sitios de Unión , Cristalografía por Rayos X , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Enterococcus faecalis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Eliminación de Gen , Cinética , Modelos Moleculares , Conformación de Ácido Nucleico , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alineación de Secuencia , Termodinámica , Sistemas de Secreción Tipo IV/metabolismo , Vancomicina/farmacología , Resistencia a la Vancomicina/genética
15.
Int J Mol Sci ; 21(16)2020 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-32784509

RESUMEN

Birch pollen allergy is among the most prevalent pollen allergies in Northern and Central Europe. This IgE-mediated disease can be treated with allergen immunotherapy (AIT), which typically gives rise to IgG antibodies inducing tolerance. Although the main mechanisms of allergen immunotherapy (AIT) are known, questions regarding possible Fc-mediated effects of IgG antibodies remain unanswered. This can mainly be attributed to the unavailability of appropriate tools, i.e., well-characterised recombinant antibodies (rAbs). We hereby aimed at providing human rAbs of several classes for mechanistic studies and as possible candidates for passive immunotherapy. We engineered IgE, IgG1, and IgG4 sharing the same variable region against the major birch pollen allergen Bet v 1 using Polymerase Incomplete Primer Extension (PIPE) cloning. We tested IgE functionality and IgG blocking capabilities using appropriate model cell lines. In vitro studies showed IgE engagement with FcεRI and CD23 and Bet v 1-dependent degranulation. Overall, we hereby present fully functional, human IgE, IgG1, and IgG4 sharing the same variable region against Bet v 1 and showcase possible applications in first mechanistic studies. Furthermore, our IgG antibodies might be useful candidates for passive immunotherapy of birch pollen allergy.


Asunto(s)
Alérgenos/inmunología , Betula/química , Hipersensibilidad/inmunología , Inmunoglobulina E/inmunología , Inmunoglobulina G/inmunología , Polen/química , Rinitis Alérgica Estacional/inmunología , Especificidad de Anticuerpos/inmunología , Basófilos/fisiología , Degranulación de la Célula/fisiología , Endocitosis , Humanos , Inmunoglobulina E/sangre , Monocitos/metabolismo , Proteínas Recombinantes/metabolismo , Células U937 , Regulación hacia Arriba
16.
Mol Microbiol ; 109(3): 263-267, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29873122

RESUMEN

Conjugative type IV secretion systems (T4SSs) are multi-protein complexes in Gram-negative and Gram-positive (G+) bacteria, responsible for spreading antibiotic resistances and virulence factors among different species. Compared to Gram-negative bacteria, which establish close contacts for conjugative transfer via sex pili, G+ T4SSs are suggested to employ surface adhesins instead. One example is pCF10, an enterococcal conjugative sex-pheromone responsive plasmid with a narrow host range, thus disseminating genetic information only among closely related species. This MicroCommentary is dedicated to the crystal structure of the pCF10-encoded adhesion domain of PrgB presented by Schmitt et al. The authors show in their work that this adhesion domain is responsible for biofilm formation, tight binding and condensation of extracellular DNA (eDNA) and conjugative transfer of pCF10. A sophisticated two-step mechanism for highly efficient conjugative transfer is postulated, including the formation of PrgB-mediated long-range intercellular contacts by binding and establishment of shorter-range contacts via condensation of eDNA. PrgB binding to lipoteichoic acid on the recipient cell surface stabilizes junctions between the mating partners. The major findings by Schmitt et al. will be brought into a broader context and potential medical applications targeting eDNA as essential component in biofilm formation and conjugation will be discussed.


Asunto(s)
Conjugación Genética , Enterococcus , Proteínas Bacterianas/genética , Biopelículas , ADN , Enterococcus faecalis/genética , Plásmidos
17.
Genome Res ; 26(8): 1145-59, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27382025

RESUMEN

Alternative polyadenylation (APA) is a general mechanism of transcript diversification in mammals, which has been recently linked to proliferative states and cancer. Different 3' untranslated region (3' UTR) isoforms interact with different RNA-binding proteins (RBPs), which modify the stability, translation, and subcellular localization of the corresponding transcripts. Although the heterogeneity of pre-mRNA 3' end processing has been established with high-throughput approaches, the mechanisms that underlie systematic changes in 3' UTR lengths remain to be characterized. Through a uniform analysis of a large number of 3' end sequencing data sets, we have uncovered 18 signals, six of which are novel, whose positioning with respect to pre-mRNA cleavage sites indicates a role in pre-mRNA 3' end processing in both mouse and human. With 3' end sequencing we have demonstrated that the heterogeneous ribonucleoprotein C (HNRNPC), which binds the poly(U) motif whose frequency also peaks in the vicinity of polyadenylation (poly(A)) sites, has a genome-wide effect on poly(A) site usage. HNRNPC-regulated 3' UTRs are enriched in ELAV-like RBP 1 (ELAVL1) binding sites and include those of the CD47 gene, which participate in the recently discovered mechanism of 3' UTR-dependent protein localization (UDPL). Our study thus establishes an up-to-date, high-confidence catalog of 3' end processing sites and poly(A) signals, and it uncovers an important role of HNRNPC in regulating 3' end processing. It further suggests that U-rich elements mediate interactions with multiple RBPs that regulate different stages in a transcript's life cycle.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Poliadenilación/genética , Proteínas de Unión al ARN/genética , Transcripción Genética , Regiones no Traducidas 3'/genética , Animales , Sitios de Unión , Citoplasma/genética , Expresión Génica , Humanos , Ratones , ARN Mensajero/genética
18.
Int J Mol Sci ; 20(12)2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31234267

RESUMEN

The house dust mite (HDM) Dermatophagoides pteronyssinus is an important risk factor for asthma and rhinitis. Allergen specific immunotherapy that is based on recombinant proteins has been proposed for the safer and more efficient treatment of allergic diseases. The aim of this study was to design and obtain a hybrid protein (DPx4) containing antigenic regions of allergens Der p 1, Der p 2, Der p 7, and Der p 10 from this mite. DPx4 was produced in Escherichia coli and its folding was determined by circular dichroism. Non-denaturing dot-blot, ELISA, basophil activation test, dot blot with monoclonal antibodies, ELISA inhibition, and cysteine protease activity assays were performed. Mice that were immunized with DPx4 were also analyzed. We found that DPx4 had no cysteine protease activity and it showed significantly lower IgE reactivity than Der p 1, Der p 2, and D. pteronyssinus extract. DPx4 induced lower basophil activation than Der p 2 and the allergen extract. Immunized mice produced IgG antibodies that inhibited the binding of allergic patient's IgE to the allergen extract and induced comparatively higher levels of IL-10 than the extract in peripheral blood mononuclear cells (PBMC) culture. These results suggest that DPx4 has immunological properties that are useful for the development of a mite allergy vaccine.


Asunto(s)
Alérgenos/uso terapéutico , Antígenos Dermatofagoides/uso terapéutico , Dermatophagoides pteronyssinus/inmunología , Hipersensibilidad/prevención & control , Alérgenos/genética , Alérgenos/inmunología , Animales , Antígenos Dermatofagoides/genética , Antígenos Dermatofagoides/inmunología , Dermatophagoides pteronyssinus/genética , Femenino , Humanos , Hipersensibilidad/inmunología , Inmunización , Ratones , Ratones Endogámicos BALB C , Ingeniería de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/uso terapéutico , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/uso terapéutico
19.
Clin Exp Allergy ; 48(10): 1354-1363, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29992665

RESUMEN

BACKGROUND: Aedes aegypti and Dermatophagoides pteronyssinus contain important allergens including cross-reactive tropomyosins. However, the functional and clinical relevance of their cross-reactivity is still debated. OBJECTIVE: To analyse the humoral and cellular cross-reactivity of recombinant Aed a 10.01, Aed a 10.02 and Der p 10. METHODS: Sera from 15 Austrian house dust mite-allergic, Der p 10-sensitized individuals were tested for IgE reactivity to recombinant tropomyosins in ELISA, inhibition ELISA and basophil activation tests. BALB/c mice were immunized with Aed a 10.01 or Aed a 10.02, and their sera were assessed for reactivity to all tropomyosins. Splenocytes were stimulated with all tropomyosins and synthetic peptides representing the amino acid sequence of Aed a 10.01. RESULTS: IgE antibodies of Der p 10-sensitized patients cross-reacted with both tropomyosins from A. aegypti. Aed a 10.01 was a more potent inhibitor of IgE binding to Der p 10 and a stronger activator of basophils sensitized with Der p 10-specific IgE than Aed a 10.02. Murine antibodies raised against Aed a 10.01 and Aed a 10.02 cross-reacted with Der p 10. Aed a 10.01-specific antibody showed stronger cross-reactivity with Der p 10 than Aed a 10.02-specific antibody. Splenocytes from both groups of mice proliferated similarly to all tropomyosins. Five cross-reactive T cell-activating regions were identified. CONCLUSION AND CLINICAL RELEVANCE: Tropomyosins from D. pteronyssinus and A. aegypti show humoral and cellular cross-reactivity, involving 5 potential T cell-activating regions. The more pronounced cross-reactivity of Aed a 10.01 and Der p 10 matched the higher sequence similarity of both proteins.


Asunto(s)
Reacciones Cruzadas/inmunología , Culicidae/inmunología , Inmunidad Celular , Inmunidad Humoral , Pyroglyphidae/inmunología , Tropomiosina/inmunología , Adolescente , Adulto , Alérgenos/inmunología , Secuencia de Aminoácidos , Animales , Niño , Dermatophagoides pteronyssinus/inmunología , Epítopos de Linfocito T/química , Epítopos de Linfocito T/inmunología , Femenino , Humanos , Hipersensibilidad/inmunología , Inmunoglobulina E/inmunología , Activación de Linfocitos/inmunología , Masculino , Ratones , Persona de Mediana Edad , Linfocitos T/inmunología , Linfocitos T/metabolismo , Adulto Joven
20.
Curr Top Microbiol Immunol ; 413: 115-141, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29536357

RESUMEN

Conjugative DNA transfer is the most important means to transfer antibiotic resistance genes and virulence determinants encoded by plasmids, integrative conjugative elements (ICE), and pathogenicity islands among bacteria. In gram-positive bacteria, there exist two types of conjugative systems, (i) type IV secretion system (T4SS)-dependent ones, like those encoded by the Enterococcus, Streptococcus, Staphylococcus, Bacillus, and Clostridia mobile genetic elements and (ii) T4SS-independent ones, as those found on Streptomyces plasmids. Interestingly, very recently, on the Streptococcus suis genome, the first gram-positive T4SS not only involved in conjugative DNA transfer but also in effector translocation to the host was detected. Although no T4SS core complex structure from gram-positive bacteria is available, several structures from T4SS protein key factors from Enterococcus and Clostridia plasmids have been solved. In this chapter, we summarize the current knowledge on the molecular mechanisms and structure-function relationships of the diverse conjugation machineries and emerging research needs focused on combatting infections and spread of multiple resistant gram-positive pathogens.


Asunto(s)
Bacterias Grampositivas , ADN , Plásmidos , Sistemas de Secreción Tipo IV , Factores de Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA