Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Exp Cell Res ; : 114155, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39002689

RESUMEN

At least one-third of patients with epithelial ovarian cancer (OC) present ascites at diagnosis and almost all have ascites at recurrence especially because of the propensity of the OC cells to spread in the abdominal cavity leading to peritoneal metastasis. The influence of ascites on the development of pre-metastatic niches, and on the biological mechanisms leading to cancer cell colonization of the mesothelium, remains poorly understood. Here, we show that ascites weakens the mesothelium by affecting the morphology of mesothelial cells and by destabilizing their distribution in the cell cycle. Ascites also causes destabilization of the integrity of mesothelium by modifying the organization of cell junctions, but it does not affect the synthesis of N-cadherin and ZO-1 by mesothelial cells. Moreover, ascites induces disorganization of focal contacts and causes actin cytoskeletal reorganization potentially dependent on the activity of Rac1. Ascites allows the densification and reorganization of ECM proteins of the mesothelium, especially fibrinogen/fibrin, and indicates that it is a source of the fibrinogen and fibrin surrounding OC spheroids. The fibrin in ascites leads to the adhesion of OC spheroids to the mesothelium, and ascites promotes their disaggregation followed by the clearance of mesothelial cells. Both αV and α5ß1 integrins are involved. In conclusion ascites and its fibrinogen/fibrin composition affects the integrity of the mesothelium and promotes the integrin-dependent implantation of OC spheroids in the mesothelium.

2.
Exp Cell Res ; 371(1): 104-121, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30076804

RESUMEN

Fibronectin (Fn) is an extracellular matrix (ECM) multifunctional glycoprotein essential for regulating cells behaviors. Within ECM, Fn is found as polymerized fibrils. Apart from fibrils, Fn could also form other kind of supramolecular assemblies such as aggregates. To gain insight into the impact of Fn aggregates on cell behavior, we generated several Fn oligomeric assemblies. These assemblies displayed various amyloid-like properties but were not cytotoxic. In presence of the more amyloid-like structured assemblies of Fn, the cell-ECM networks were altered and the cell shapes shifted toward extended mesenchymal morphologies. Additionnaly, the Fn amyloid-like aggregates promoted a single-cell and sparsed migration of SKOV3 cancer cells, which was associated with a relocalization of αv integrins from plasma membrane to perinuclear vesicles. These data pointed out that the features of supramolecular Fn assemblies could represent a higher level of fine-tuning cell phenotype, and especially migration of cancer cells.


Asunto(s)
Proteínas Amiloidogénicas/metabolismo , Células Epiteliales/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Agregado de Proteínas , Proteínas Amiloidogénicas/química , Animales , Células CHO , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Forma de la Célula , Cricetulus , Células Epiteliales/química , Células Epiteliales/ultraestructura , Matriz Extracelular/química , Matriz Extracelular/ultraestructura , Fibronectinas/química , Cadenas alfa de Integrinas/química , Cadenas alfa de Integrinas/metabolismo , Análisis de la Célula Individual
3.
Exp Cell Res ; 320(2): 329-42, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24291221

RESUMEN

Ovarian cancer is the most lethal gynecologic cancer mainly due to spheroids organization of cancer cells that disseminate within the peritoneal cavity. We have investigated the molecular mechanisms by which ovarian cancer spheroids resist anoikis, choosing as models the 2 well-characterized human ovarian cancer cell lines IGROV1 and SKOV3. These cell lines have the propensity to float as clusters, and were isolated from tumor tissue and ascites, respectively. To form spheroids, IGROV1 and SKOV3 ovarian adenocarcinoma cells were maintained under anchorage-independent culture conditions, in which both lines survive at least a week. A short apoptotic period prior to a survival signaling commitment was observed for IGROV1 cells whereas SKOV3 cells entered G0/G1 phase of the cell cycle. This difference in behavior was due to different signals. With regard to SKOV3 cells, activation of p38 and an increase in p130/Rb occurred once anchorage-independent culture was established. Analyses of the survival signaling pathway switched on by IGROV1 cells showed that activation of ERK1/2 was required to evade apoptosis, an effect partly dependent on PKC activation and αv integrins. αv-integrin expression is essential for survival through activation of ERK1/2 phosphorylation. The above data indicate that ovarian cancer cells can resist anoikis in the spheroid state by arrest in the cell cycle or through activation of αv-integrin-ERK-mediated survival signals. Such signaling might result in the selection of resistant cells within disseminating spheroids, favoring further relapse in ovarian cancers.


Asunto(s)
Anoicis , Puntos de Control del Ciclo Celular/fisiología , Integrina alfaV/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Neoplasias Ováricas/patología , Proteína Quinasa C/metabolismo , Esferoides Celulares/patología , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Anoicis/genética , Supervivencia Celular/genética , Activación Enzimática , Femenino , Humanos , Persona de Mediana Edad , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Transducción de Señal/genética , Esferoides Celulares/metabolismo , Células Tumorales Cultivadas
4.
Biochim Biophys Acta ; 1830(10): 4885-97, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23811340

RESUMEN

BACKGROUND: Intra-abdominal ascites is a complication of ovarian cancers and constitutes a permissive microenvironment for metastasis. Since fibronectin and vitronectin are key actors in ovarian cancer progression, we investigated their occurrence and molecular characteristics in various ascites fluids and the influence of these ascites-derived proteins on cell behavior. METHODS: Fibronectin and vitronectin were investigated by immunoblotting within various ascites fluids. A combined affinity-based protocol was developed to purify both proteins from the same sample. Each purified protein was characterized with regard to its molecular features (molecular mass of isoforms, tryptophan intramolecular environment, hydrodynamic radii), and its influence on cell adhesion. RESULTS: Fibronectin and vitronectin were found in all tested ascites. Several milligrams of purified proteins were obtained from ascites of varying initial volumes. Molecular mass isoforms and conformational lability of proteins differed according to the ascites of origin. When incorporated into the cancer cell environment, ascites-derived fibronectin and vitronectin supported cell adhesion and migration with various degrees of efficiency, and induced the recruitment of integrins into focal contacts. CONCLUSIONS: To our knowledge, this is the first combined purification of two extracellular matrix proteins from a single pathological sample containing a great variety of bioactive molecules. This study highlights that ascites-derived fibronectin and vitronectin exhibit different properties depending on the ascites. GENERAL SIGNIFICANCE: Investigating the relationships between the molecular properties of ascites components and ovarian cancer cell phenotype according to the ascites may be critical for a better understanding of the recurrence of this lethal disease and for further biomarker identification.


Asunto(s)
Ascitis/metabolismo , Fibronectinas/metabolismo , Neoplasias Ováricas/metabolismo , Vitronectina/metabolismo , Femenino , Fibronectinas/química , Humanos , Neoplasias Ováricas/patología , Conformación Proteica , Vitronectina/química
5.
Sci Rep ; 14(1): 13271, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858407

RESUMEN

Touch DNA, which can be found at crime scenes, consists of invisible biological traces deposited through a person's skin's contact with an object or another person. Many factors influence touch DNA transfer, including the "destination" substrate's surface. The latter's physicochemical characteristics (wettability, roughness, surface energy, etc.) will impact touch DNA deposition and persistence on a substrate. We selected a representative panel of substrates from objects found at crime scenes (glass, polystyrene, tiles, raw wood, etc.) to investigate the impact of these characteristics on touch DNA deposition and detection. These were shown to impact cell deposition, morphology, retention, and subsequent touch DNA genetic analysis. Interestingly, cell-derived fragments found within keratinocyte cells and fingermarks using in vitro touch DNA models could be successfully detected whichever the substrates' physicochemistry by targeting cellular proteins and carbohydrates for two months, indoors and outdoors. However, swabbing and genetic analyses of such mock traces from different substrates produced informative profiles mainly for substrates with the highest surface free energy and therefore the most hydrophilic. The substrates' intrinsic characteristics need to be considered to better understand both the transfer and persistence of biological traces, as well as their detection and collection, which require an appropriate methodology and sampling device to get informative genetic profiles.


Asunto(s)
ADN , Tacto , Humanos , ADN/química , Propiedades de Superficie , Piel/metabolismo , Piel/química , Queratinocitos/metabolismo , Dermatoglifia del ADN/métodos
6.
Biomolecules ; 13(1)2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36671488

RESUMEN

Ovarian cancer (OC) is a disease of major concern with a survival rate of about 40% at five years. This is attributed to the lack of visible and reliable symptoms during the onset of the disease, which leads over 80% of patients to be diagnosed at advanced stages. This implies that metastatic activity has advanced to the peritoneal cavity. It is associated with both genetic and phenotypic heterogeneity, which considerably increase the risks of relapse and reduce the survival rate. To understand ovarian cancer pathophysiology and strengthen the ability for drug screening, further development of relevant in vitro models that recapitulate the complexity of OC microenvironment and dynamics of OC cell population is required. In this line, the recent advances of tridimensional (3D) cell culture and microfluidics have allowed the development of highly innovative models that could bridge the gap between pathophysiology and mechanistic models for clinical research. This review first describes the pathophysiology of OC before detailing the engineering strategies developed to recapitulate those main biological features.


Asunto(s)
Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/metabolismo , Técnicas de Cultivo de Célula , Microambiente Tumoral
7.
Sci Rep ; 13(1): 18105, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872292

RESUMEN

At a crime scene, investigators are faced with a multitude of traces. Among them, biological traces are of primary interest for the rapid genetic-based identification of individuals. "Touch DNA" consists of invisible biological traces left by the simple contact of a person's skin with objects. To date, these traces remain undetectable with the current methods available in the field. This study proposes a proof-of-concept for the original detection of touch DNA by targeting cell-derived fragments in addition to DNA. More specifically, adhesive-structure proteins (laminin, keratin) as well as carbohydrate patterns (mannose, galactose) have been detected with keratinocyte cells derived from a skin and fingermark touch-DNA model over two months in outdoor conditions. Better still, this combinatory detection strategy is compatible with DNA profiling. This proof-of-concept work paves the way for the optimization of tools that can detect touch DNA, which remains a real challenge in helping investigators and the delivery of justice.


Asunto(s)
Criminales , Humanos , Piel , Dermatoglifia del ADN , Tacto , ADN/genética
8.
Sci Rep ; 13(1): 18283, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880340

RESUMEN

Tissue engineering is a promising alternative to current full thickness circumferential esophageal replacement methods. The aim of our study was to develop a clinical grade Decellularized Human Esophagus (DHE) for future clinical applications. After decontamination, human esophagi from deceased donors were placed in a bioreactor and decellularized with sodium dodecyl sulfate (SDS) and ethylendiaminetetraacetic acid (EDTA) for 3 days. The esophagi were then rinsed in sterile water and SDS was eliminated by filtration on an activated charcoal cartridge for 3 days. DNA was removed by a 3-hour incubation with DNase. A cryopreservation protocol was evaluated at the end of the process to create a DHE cryobank. The decellularization was efficient as no cells and nuclei were observed in the DHE. Sterility of the esophagi was obtained at the end of the process. The general structure of the DHE was preserved according to immunohistochemical and scanning electron microscopy images. SDS was efficiently removed, confirmed by a colorimetric dosage, lack of cytotoxicity on Balb/3T3 cells and mesenchymal stromal cell long term culture. Furthermore, DHE did not induce lymphocyte proliferation in-vitro. The cryopreservation protocol was safe and did not affect the tissue, preserving the biomechanical properties of the DHE. Our decellularization protocol allowed to develop the first clinical grade human decellularized and cryopreserved esophagus.


Asunto(s)
Matriz Extracelular , Andamios del Tejido , Ratones , Animales , Humanos , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Criopreservación , Dodecil Sulfato de Sodio/química , Esófago
9.
Blood ; 114(27): 5547-56, 2009 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-19837976

RESUMEN

Extracellular matrix metalloproteinase inducer (EMMPRIN/CD147) is thought to promote tumor angiogenesis mostly through its protease-inducing function and more recently by its ability to increase tumor cell expression of vascular endothelial growth factor (VEGF). In this study, we present evidence that EMMPRIN can promote angiogenesis by a direct effect on endothelial cells through a paracrine regulation of the VEGF/VEGF-receptor (VEGFR) system. Using human microvascular endothelial cell line-1 endothelial cells, we show that EMMPRIN selectively increased the soluble VEGF isoforms (121 and 165), but not the matrix-bound VEGF 189 form. In addition, EMMPRIN up-regulated the expression of VEGFR-2 without an effect on VEGFR-1. This increase in VEGFR-2 was responsible for the observed EMMPRIN stimulation of the migratory and tube formation capacity of endothelial cells. EMMPRIN's effects, which were matrix metalloproteinase and urokinase-type plasminogen activator independent, were mediated primarily through hypoxia-inducible factor-2alpha expression, also up-regulated by EMMPRIN. VEGFR-2 increase was also observed in vivo in a mouse model of xenograph tumors overexpressing EMMPRIN. These results suggest that in addition to increasing protease production, EMMPRIN may contribute to the formation of a reactive stroma also through the up-regulation of hypoxia-inducible factor-2alpha, VEGFR-2, and the soluble forms of VEGF in endothelial cells, thus directly regulating the angiogenic process.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Basigina/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Basigina/genética , Basigina/metabolismo , Células CHO , Línea Celular , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Cricetinae , Cricetulus , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Immunoblotting , Ratones , Ratones Desnudos , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Solubilidad , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
10.
Biomaterials ; 269: 120610, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33388691

RESUMEN

An early fundamental step in ovarian cancer progression is the dissemination of cancer cells through liquid environments, one of them being cancer ascites accumulated in the peritoneal cavity. These biological fluids are highly crowded with a high total macromolecule concentration. This biophysical property of fluids is widely used in tissue engineering for a few decades now, yet is largely underrated in cancer biomimetic models. To unravel the role of fluids extracellular macromolecular crowding (MMC), we exposed ovarian cancer cells (OCC) to high molecular weight inert polymer solutions. High macromolecular composition of extracellular liquid presented a differential effect: i) it impeded non-adherent OCC aggregation in suspension and, decreased their adhesion; ii) it promoted adherent OCC migration by decreasing extracellular matrix deposition. Besides, there seemed to be a direct link between the extracellular MMC and intracellular processes, especially the actin cytoskeleton organization and the nucleus morphology. In conclusion, extracellular fluid MMC orients OCC dissemination phenotype. Integrating MMC seems crucial to produce more relevant mimetic 3D in vitro fluid models to study ovarian dissemination but also to screen drugs.


Asunto(s)
Biomimética , Neoplasias Ováricas , Matriz Extracelular , Femenino , Humanos , Sustancias Macromoleculares , Fenotipo , Microambiente Tumoral
11.
Tumour Biol ; 31(2): 129-39, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20358426

RESUMEN

Ovarian cancer progression is frequently associated with the development of malignant ascites. Multicellular aggregates of carcinoma cells (spheroids) found within ascites are thought to be able to promote peritoneal carcinomatosis. We have previously demonstrated the involvement of the vitronectin/alphav integrin adhesive system in the dissemination of ovarian cancer cells and continue to investigate the influence of these molecules by studying their role(s) in spheroid behavior. The aim of this study was to generate ovarian cancer multicellular aggregates and to focus on the role of vitronectin and alphav integrins in their initiation. IGROV1 cancer cells cultured in the absence of adhesive substratum formed multicellular aggregates comparable to spheroids. After 21 days, a fraction of the cells within clusters remained viable and proliferated recurrently. Within the multicellular aggregates, vitronectin and alphav integrins were co-localized at intercellular sites, suggesting their involvement in cell-cell interactions. Initial formation of IGROV1 aggregates was inhibited using anti-vitronectin and anti-alphav integrin blocking antibodies or the cyclic peptide cRGDfV. Vitronectin expression persisted during cluster disaggregation on fibronectin. These results demonstrate the ability of IGROV1 cells to generate multicellular aggregates and point to a contributory role for the vitronectin/alphav integrin system in the initial step of this process. These events could represent a prerequisite for further dissemination.


Asunto(s)
Adenocarcinoma/patología , Neoplasias Ováricas/patología , Vitronectina/fisiología , Adhesión Celular , Agregación Celular , Línea Celular Tumoral , Femenino , Humanos , Integrina alfaV/análisis , Integrina alfaV/fisiología , Vitronectina/análisis
12.
Eur J Med Chem ; 188: 112009, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31883488

RESUMEN

SRO-91 is a non-natural ribofuranosyl-1,2,3-triazole C-nucleoside obtained by a synthetic sequence involving a C-alkynyl glycosylation mediated by metallic indium and a Huisgen cycloaddition for the construction of the triazole. Its structure is close to the one of ribavirin, a drug presenting a broad-spectrum against viral infections. SRO-91 antitumor activities were investigated on 9 strains of tumor cells and IC50 of the order of 1 µM were obtained on A431 epidermoid carcinoma cells and B16F10 skin melanoma cells. In addition, studies of ovarian tumor cell inhibitions show an interesting activity in regard to the need for new drugs for this pathology. Finally, cytotoxicity and mouse toxicity studies reveal a favorable therapeutic index for SRO-91.


Asunto(s)
Antineoplásicos/farmacología , Ribavirina/análogos & derivados , Ribavirina/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/toxicidad , Línea Celular Transformada , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Masculino , Ratones , Ribavirina/toxicidad
13.
PLoS One ; 14(12): e0225860, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31825993

RESUMEN

Epithelial ovarian cancers are insidious pathologies that give a poor prognosis due to their late discovery and the increasing emergence of chemoresistance. Development of small pharmacological anticancer molecules remains a major challenge. Ribavirin, usually used in the treatment of hepatitis C virus infections and more recently few cancers, has been a suggestion. However, Ribavirin has many side-effects, suggesting that the synthesis of analogs might be more appropriate. We have investigated the effect of a Ribavirin analog, SRO-91, on cancer cell behavioral characteristics considered as some of the hallmarks of cancer. Two human ovarian adenocarcinoma cell lines (SKOV3 and IGROV1) and normal cells (mesothelial and fibroblasts) have been used to compare the effects of SRO-91 with those of Ribavirin on cell behavior underlying tumor cell dissemination. SRO-91, like Ribavirin, inhibits proliferation, migration, clonogenicity and spheroids formation of cancer cells. Unlike Ribavirin, SRO-91 is preferentially toxic to cancer compared with normal cells. An in vitro physiologically relevant model showed that SRO-91, like Ribavirin or cisplatin, inhibits cancer cell implantation onto peritoneal mesothelium. In conclusion, SRO-91 analog effects on tumor dissemination and its safety regarding non-cancerous (normal) cells are encouraging findings a promising drug for the treatment of ovarian cancer.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Ováricas , Ribavirina/farmacología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología
14.
J Tissue Eng Regen Med ; 13(12): 2191-2203, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31670903

RESUMEN

In pathologies of the esophagus such as esophageal atresia, cancers, and caustic injuries, methods for full thickness esophageal replacement require the sacrifice of healthy intra-abdominal organs such as the stomach and the colon and are associated with high morbidity, mortality, and poor functional results. To overcome these problems, tissue engineering methods are developed to create a substitute with scaffolds and cells. The aim of this study was to develop a simple and safe decellularization process in order to obtain a clinical grade esophageal extracellular matrix. Following the decontamination step, porcine esophagi were decellularized in a bioreactor with sodium dodecyl sulfate and ethylenediaminetetraacetic acid for 3 days and were rinsed with deionized water. DNA was eliminated by a 3-hr DNase treatment. To remove any residual detergent, the matrix was then incubated with an absorbing resin. The resulting porcine esophageal matrix was characterized by the assessment of the efficiency of the decellularization process (DNA quantification), evaluation of sterility and absence of cytotoxicity, and its composition and biomechanical properties, as well as the possibility to be reseeded with mesenchymal stem cells. Complete decellularization with the preservation of the general structure, composition, and biomechanical properties of the native esophageal matrix was obtained. Sterility was maintained throughout the process, and the matrix showed no cytotoxicity. The resulting matrix met clinical grade criteria and was successfully reseeded with mesenchymal stem cells..


Asunto(s)
Esófago/química , Matriz Extracelular/química , Ensayo de Materiales , Células Madre Mesenquimatosas/metabolismo , Ingeniería de Tejidos , Andamios del Tejido/química , Animales , Células Madre Mesenquimatosas/citología , Porcinos
15.
Biochim Biophys Acta Biomembr ; 1861(1): 50-61, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30343120

RESUMEN

Over the past decades, membranotropic peptides such as positively charged cell-penetrating peptides (CPPs) or amphipathic antimicrobial peptides (AMPs) have received increasing interest in order to improve therapeutic agent cellular uptake. As far as we are concerned, we were interested in studying HCV fusion peptides as putative anchors. Two peptides, HCV6 and HCV7, were identified and conjugated to a fluorescent tag NBD and tested for their interaction with liposomes as model membranes. DSC and spectrofluorescence analyses demonstrate HCV7 propensity to insert or internalize in vesicles containing anionic lipids DMPG whereas no activity was observed with zwitterionic DMPC. This behavior could be explained by the peptide sequence containing a cationic arginine residue. On the contrary, HCV6 did not exhibit any membranotropic activity but was the only sequence able to induce liposomes' fusion or aggregation monitored by spectrofluorescence and DLS. This two peptides mild activity was related to their inefficient structuration in contact with membrane mimetics, which was demonstrated by CD and NMR experiments. Altogether, our data allowed us to identify two promising membrane-active peptides from E1 and E2 HCV viral proteins, one fusogenic (HCV6) and the other membranotropic (HCV7). The latter was also confirmed by fluorescence microscopy with CHO cells, indicating that HCV7 could cross the plasma membrane via an endocytosis process. Therefore, this study provides new evidences supporting the identification of HCV6 as the HCV fusion peptide as well as insights on a novel membranotropic peptide from the HCV-E2 viral protein.


Asunto(s)
Hepacivirus/química , Hepatitis C/virología , Proteínas Recombinantes de Fusión/química , Proteínas del Envoltorio Viral/química , Animales , Péptidos Catiónicos Antimicrobianos/química , Células CHO , Rastreo Diferencial de Calorimetría , Membrana Celular/química , Péptidos de Penetración Celular/química , Dicroismo Circular , Cricetinae , Cricetulus , Transferencia Resonante de Energía de Fluorescencia , Humanos , Luz , Membrana Dobles de Lípidos/química , Liposomas/química , Espectroscopía de Resonancia Magnética , Mutagénesis , Estructura Secundaria de Proteína , Dispersión de Radiación
16.
Tumour Biol ; 29(4): 231-44, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18781095

RESUMEN

Epithelial ovarian cancer cells metastasize by implanting onto the peritoneal mesothelial surface of the abdominal cavity. Adhesive molecules that lead to this implantation remain unclear. The aim of our study was to focus on the role of vitronectin (Vn) and its receptors, alpha(v) integrins and urokinase plasminogen activator receptor (uPAR), in the interactions of ovarian adenocarcinoma cells (IGROV1 and SKOV3 cell lines) with mesothelial cells (MeT-5A cell line and primary cultures). For all cell lines, immunofluorescence staining disclosed the presence of Vn over the whole cell surface and in thin continuous deposits underlining the cell periphery. Recruitment of Vn receptors to cell-cell contact sites was also revealed. We developed two distinct methods for the evaluation of in vitro cell-cell adhesion using cocultures of the tumor and mesothelial cells. Both adhesion assays revealed a strong ability of ovarian cancer cells to adhere preferentially to mesothelial intercellular junctions. Adhesion of ovarian carcinoma cells to mesothelial cells was significantly inhibited using anti-Vn-, -alpha(v)-integrin- and -uPAR-blocking antibodies or cyclic peptide cRGDfV. These results evidence the ability of ovarian carcinoma cells to bind to peritoneal mesothelium in vitro and strongly suggest that Vn and its receptors contribute to this crucial event.


Asunto(s)
Integrina alfaVbeta3/fisiología , Neoplasias Ováricas/patología , Peritoneo/citología , Vitronectina/fisiología , Adhesión Celular , Línea Celular Tumoral , Células Epiteliales/citología , Femenino , Humanos , Integrina alfaV/análisis , Integrina alfaV/fisiología , Receptores de Superficie Celular/análisis , Receptores de Superficie Celular/fisiología , Receptores del Activador de Plasminógeno Tipo Uroquinasa , Vitronectina/análisis
17.
Acta Biomater ; 55: 481-492, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28434979

RESUMEN

Design of new osteoinductive biomaterials to reproduce an optimized physiological environment capable of recruiting stem cells and instructing their fate towards the osteoblastic lineage has become a priority in orthopaedic surgery. This work aims at evaluating the bioactivity of BMP combined with human plasma fibronectin (FN/BMP) delivered in solution or coated onto titanium-hydroxyapatite (TiHA) surfaces. Herein, we focus on the comparison of in vitro osteogenic efficacy in mouse C2C12 pre-osteoblasts of three BMP members, namely: BMP-2, BMP-6 and BMP-7. In parallel, we evaluated the molecular binding strength between each BMP with FN using the Surface Plasmon Resonance (SPR) technology. The affinity of BMPs for FN was found totally different and dependent on BMP type. Indeed, the combination of FN with BMP-2 on TiHA surfaces potentiates the burst of gene-mediated osteogenic induction, while it prolongs the osteogenic activity of BMP-6 and surprisingly annihilates the BMP-7 one. These results correlate with FN/BMP affinity for TiHA, since BMP-6>BMP-2>BMP-7. In addition, by analyzing the osteogenic activity in the peri-implant environment, we showed that osteoinductive paracrine effects were significantly decreased upon (FN/BMP-6), as opposed to (FN/BMP-2) coatings. Altogether, our results support the use of FN/BMP-6 to develop a biomimetic microenvironment capable to induce osteogenic activity under physiological conditions, with minimum paracrine signalization. STATEMENT OF SIGNIFICANCE: The originality of our paper relies on the first direct comparison of the in vitro osteogenic potential of three osteogenic BMPs (BMP-2, -6 and -7) combined with native human plasma fibronectin delivered in solution or coated by laser transfer onto titanium hydroxyapatite surfaces. We confirm that BMP association with fibronectin enhances the osteogenic activity of BMP-2, -6 and -7, but with essential discrepancies, depending on the BMP member, and in agreement with the affinity of BMPs for fibronectin. Moreover, we bring elements to explain the origin of the BMP-2 medical life-threatening side-effects by analyzing in vitro paracrine effects. Finally, this work supports the alternative use of FN/BMP-6 to induce osteogenic activity under physiological conditions, with minimum side effects.


Asunto(s)
Materiales Biomiméticos , Proteína Morfogenética Ósea 2 , Proteína Morfogenética Ósea 6 , Proteína Morfogenética Ósea 7 , Materiales Biocompatibles Revestidos , Durapatita , Fibronectinas , Osteoblastos/metabolismo , Titanio , Animales , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Proteína Morfogenética Ósea 2/química , Proteína Morfogenética Ósea 2/farmacología , Proteína Morfogenética Ósea 6/química , Proteína Morfogenética Ósea 6/farmacología , Proteína Morfogenética Ósea 7/química , Proteína Morfogenética Ósea 7/farmacología , Línea Celular , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Durapatita/química , Durapatita/farmacología , Fibronectinas/química , Fibronectinas/farmacología , Humanos , Ratones , Osteoblastos/citología , Titanio/química , Titanio/farmacología
18.
PLoS One ; 9(6): e99931, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24949635

RESUMEN

Mollusc shells are composed of more than 95% calcium carbonate and less than 5% of an organic matrix consisting mostly of proteins, glycoproteins and polysaccharides. Previous studies have elucidated the biological activities of the shell matrices from bivalve molluscs on skin, especially on the expression of the extracellular matrix components of fibroblasts. In this work, we have investigated the potential biological activities of shell matrix components extracted from the shell of the scallop Pecten maximus on human fibroblasts in primary culture. Firstly, we demonstrated that shell matrix components had different effects on general cellular activities. Secondly, we have shown that the shell matrix components stimulate the synthesis of type I and III collagens, as well as that of sulphated GAGs. The increased expression of type I collagen is likely mediated by the recruitment of transactivating factors (Sp1, Sp3 and human c-Krox) in the -112/-61 bp COL1A1 promoter region. Finally, contrarily to what was obtained in previous works, we demonstrated that the scallop shell extracts have only a small effect on cell migration during in vitro wound tests and have no effect on cell proliferation. Thus, our research emphasizes the potential use of shell matrix of Pecten maximus for dermo-cosmetic applications.


Asunto(s)
Exoesqueleto/química , Matriz Extracelular/efectos de los fármacos , Pecten/química , Extractos de Tejidos/farmacología , Animales , Fibroblastos/efectos de los fármacos , Humanos , Cultivo Primario de Células , Piel/efectos de los fármacos , Extractos de Tejidos/química
19.
Bull Cancer ; 95(9): 829-39, 2008 Sep.
Artículo en Francés | MEDLINE | ID: mdl-18829416

RESUMEN

Epithelial ovarian cancer remains an insidious and fatal gynecological malignancy. They are associated with a poor prognosis mainly due to a late diagnosis and to acquired chemoresistance. Cancer cell environment profoundly influences tumor development. Tumor microenvironment consists of vascular component, stromal fibroblasts, inflammatory cells and extracellular matrix. The multisite development of epithelial ovarian cancer results from molecular and cellular cross-talks between cancer cells, stromal cells and their extracellular matrix environment. These interactions involve cytokines, adhesives molecules, and proteolytic systems. This review points out the importance of micro-ecology in epithelial ovarian cancer development. For this purpose the relationships between cancer cells and their encountered microenvironments are described with suggesting some potential therapeutic perspectives.


Asunto(s)
Comunicación Celular/fisiología , Neoplasias Glandulares y Epiteliales/etiología , Neoplasias Ováricas/etiología , Líquido Ascítico/fisiología , Adhesión Celular/fisiología , Endotelio/fisiopatología , Matriz Extracelular/metabolismo , Femenino , Humanos , Inmunidad Celular/fisiología , Proteínas de Neoplasias/metabolismo , Neoplasias Glandulares y Epiteliales/irrigación sanguínea , Neoplasias Glandulares y Epiteliales/patología , Neoplasias Glandulares y Epiteliales/secundario , Neoplasias Ováricas/irrigación sanguínea , Neoplasias Ováricas/patología , Neoplasias Peritoneales/secundario , Células del Estroma/fisiología , Factor A de Crecimiento Endotelial Vascular/fisiología
20.
Exp Cell Res ; 313(3): 486-99, 2007 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-17126831

RESUMEN

During cutaneous wound repair, platelets, dermal fibroblasts (DF) and endothelial cells all cooperate. We have presently investigated the regulation of endothelial cell tubulogenesis by human platelet thrombospondin-1 (TSP-1), in comparison to transforming growth factor-beta1 (TGF-beta1) and total platelet lysates (PL), in a fibrin matrix cell culture system incorporating DF. TSP-1, TGF-beta1 and PL all stimulated VEGF expression in DF dose dependently at mRNA and protein level. TSP-1- and PL-treated DF supernatants significantly stimulated capillary-like structure formation (tubulogenesis) by dermal microvascular endothelial cells (HMEC-1 and HDMEC), in part via VEGF, as confirmed with neutralizing anti-VEGF antibodies. In contrast, TGF-beta1-treated DF supernatants did not induce tubulogenesis. This apparent discrepancy could be explained by the differential expression regulation in HMEC-1 of fibrinolysis and metalloproteinase mediators by TSP-1 and TGF-beta1. TSP-1 potently reduced the expression of plasminogen activator inhibitor-1 (PAI-1) (mRNA and protein), whereas TGF-beta1 enhanced it. The crucial role of PAI-1 in tubulogenesis was confirmed via the addition of active recombinant PAI-1, which abrogated tubulogenesis. In contrast, neutralizing PAI-1 antibodies enhanced tubulogenesis. Our results suggest that platelet TSP-1 released in a wound stimulates endothelial cell tubulogenesis through an upregulation of DF VEGF expression and a downregulation of endothelial cell PAI-1 expression.


Asunto(s)
Plaquetas/fisiología , Dermis/irrigación sanguínea , Endotelio Vascular/metabolismo , Inhibidor 1 de Activador Plasminogénico/metabolismo , Trombospondina 1/farmacología , Tubulina (Proteína)/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Cultivadas , Dermis/citología , Dermis/fisiología , Relación Dosis-Respuesta a Droga , Fibrina/farmacología , Fibroblastos/fisiología , Regulación de la Expresión Génica , Humanos , Modelos Biológicos , Neovascularización Fisiológica/efectos de los fármacos , Trombospondina 1/aislamiento & purificación , Trombospondina 1/metabolismo , Trombospondinas/metabolismo , Técnicas de Cultivo de Tejidos , Factor de Crecimiento Transformador beta1/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA