RESUMEN
Emerging variants of concern (VOCs) are driving the COVID-19 pandemic1,2. Experimental assessments of replication and transmission of major VOCs and progenitors are needed to understand the mechanisms of replication and transmission of VOCs3. Here we show that the spike protein (S) from Alpha (also known as B.1.1.7) and Beta (B.1.351) VOCs had a greater affinity towards the human angiotensin-converting enzyme 2 (ACE2) receptor than that of the progenitor variant S(D614G) in vitro. Progenitor variant virus expressing S(D614G) (wt-S614G) and the Alpha variant showed similar replication kinetics in human nasal airway epithelial cultures, whereas the Beta variant was outcompeted by both. In vivo, competition experiments showed a clear fitness advantage of Alpha over wt-S614G in ferrets and two mouse models-the substitutions in S were major drivers of the fitness advantage. In hamsters, which support high viral replication levels, Alpha and wt-S614G showed similar fitness. By contrast, Beta was outcompeted by Alpha and wt-S614G in hamsters and in mice expressing human ACE2. Our study highlights the importance of using multiple models to characterize fitness of VOCs and demonstrates that Alpha is adapted for replication in the upper respiratory tract and shows enhanced transmission in vivo in restrictive models, whereas Beta does not overcome Alpha or wt-S614G in naive animals.
Asunto(s)
COVID-19/transmisión , COVID-19/virología , Mutación , SARS-CoV-2/clasificación , SARS-CoV-2/fisiología , Replicación Viral , Sustitución de Aminoácidos , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Animales de Laboratorio/virología , COVID-19/veterinaria , Cricetinae , Modelos Animales de Enfermedad , Células Epiteliales/virología , Femenino , Hurones/virología , Humanos , Masculino , Mesocricetus/virología , Ratones , Ratones Transgénicos , SARS-CoV-2/genética , SARS-CoV-2/crecimiento & desarrollo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Virulencia/genéticaRESUMEN
During the evolution of SARS-CoV-2 in humans, a D614G substitution in the spike glycoprotein (S) has emerged; virus containing this substitution has become the predominant circulating variant in the COVID-19 pandemic1. However, whether the increasing prevalence of this variant reflects a fitness advantage that improves replication and/or transmission in humans or is merely due to founder effects remains unknown. Here we use isogenic SARS-CoV-2 variants to demonstrate that the variant that contains S(D614G) has enhanced binding to the human cell-surface receptor angiotensin-converting enzyme 2 (ACE2), increased replication in primary human bronchial and nasal airway epithelial cultures as well as in a human ACE2 knock-in mouse model, and markedly increased replication and transmissibility in hamster and ferret models of SARS-CoV-2 infection. Our data show that the D614G substitution in S results in subtle increases in binding and replication in vitro, and provides a real competitive advantage in vivo-particularly during the transmission bottleneck. Our data therefore provide an explanation for the global predominance of the variant that contains S(D614G) among the SARS-CoV-2 viruses that are currently circulating.
Asunto(s)
COVID-19/transmisión , COVID-19/virología , Mutación , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/genética , Replicación Viral/genética , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Bronquios/citología , Bronquios/virología , COVID-19/epidemiología , Línea Celular , Células Cultivadas , Cricetinae , Modelos Animales de Enfermedad , Células Epiteliales/virología , Femenino , Hurones/virología , Efecto Fundador , Técnicas de Sustitución del Gen , Aptitud Genética , Humanos , Masculino , Mesocricetus , Ratones , Mucosa Nasal/citología , Mucosa Nasal/virología , Unión Proteica , ARN Viral/análisis , Receptores de Coronavirus/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidadRESUMEN
Reverse genetics has been an indispensable tool to gain insights into viral pathogenesis and vaccine development. The genomes of large RNA viruses, such as those from coronaviruses, are cumbersome to clone and manipulate in Escherichia coli owing to the size and occasional instability of the genome1-3. Therefore, an alternative rapid and robust reverse-genetics platform for RNA viruses would benefit the research community. Here we show the full functionality of a yeast-based synthetic genomics platform to genetically reconstruct diverse RNA viruses, including members of the Coronaviridae, Flaviviridae and Pneumoviridae families. Viral subgenomic fragments were generated using viral isolates, cloned viral DNA, clinical samples or synthetic DNA, and these fragments were then reassembled in one step in Saccharomyces cerevisiae using transformation-associated recombination cloning to maintain the genome as a yeast artificial chromosome. T7 RNA polymerase was then used to generate infectious RNA to rescue viable virus. Using this platform, we were able to engineer and generate chemically synthesized clones of the virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)4, which has caused the recent pandemic of coronavirus disease (COVID-19), in only a week after receipt of the synthetic DNA fragments. The technical advance that we describe here facilitates rapid responses to emerging viruses as it enables the real-time generation and functional characterization of evolving RNA virus variants during an outbreak.
Asunto(s)
Betacoronavirus/genética , Clonación Molecular/métodos , Infecciones por Coronavirus/virología , Genoma Viral/genética , Genómica/métodos , Neumonía Viral/virología , Genética Inversa/métodos , Biología Sintética/métodos , Animales , COVID-19 , China/epidemiología , Chlorocebus aethiops , Cromosomas Artificiales de Levadura/metabolismo , Infecciones por Coronavirus/epidemiología , ARN Polimerasas Dirigidas por ADN/metabolismo , Evolución Molecular , Humanos , Mutación , Pandemias/estadística & datos numéricos , Neumonía Viral/epidemiología , Virus Sincitiales Respiratorios/genética , SARS-CoV-2 , Saccharomyces cerevisiae/genética , Células Vero , Proteínas Virales/metabolismo , Virus Zika/genéticaRESUMEN
Feline infectious peritonitis (FIP) is a fatal feline disease, caused by a feline coronavirus (FCoV), namely feline infectious peritonitis virus (FIPV). We produced a baby hamster kidney 21 (BHK) cell line expressing a serotype I FCoV replicon RNA with a green fluorescent protein (GFP) reporter gene (BHK-F-Rep) and used it as an in vitro screening system to test different antiviral compounds. Two inhibitors of the FCoV main protease (Mpro), namely GC376 and Nirmatrelvir, as well as the nucleoside analog Remdesivir proved to be effective in inhibiting the replicon system. Different combinations of these compounds also proved to be potent inhibitors, having an additive effect when combined. Remdesivir, GC376, and Nirmatrelvir all have a 50% cytotoxic concentration (CC50) more than 200 times higher than their half-maximal inhibitory concentrations (IC50), making them important candidates for future in vivo studies as well as clinically implemented drug candidates. In addition, results were acquired with a virus infection system, where Felis catus whole fetus 4 (Fcwf-4) cells were infected with a previously described recombinant GFP-expressing FIPV (based on the laboratory-adapted serotype I FIPV strain Black) and treated with the most promising compounds. Results acquired with the replicon system were comparable to the results acquired with the virus infection system, demonstrating that we successfully implemented the FCoV replicon system for antiviral screening. We expect that this system will greatly facilitate future screens for anti-FIPV compounds and provide a non-infectious system to study and evaluate drug-resistant mutations that may emerge in the FIPV genome.IMPORTANCEFIPV is of great significance in the cat population around the world, causing 0.3%-1.4% of feline deaths in veterinary practices (2). As there are neither effective preventive measures nor approved treatment options available, there is an urgent need to identify antiviral drugs against FIPV. Our FCoV replicon system provides a valuable tool for drug discovery in vitro. Due to the lack of cell culture systems for serotype I FCoVs (the serotype most prevalent in the feline population) (2), a different system is needed to study these viruses. A viral replicon system is a valuable tool for studying FCoVs. Overall, our results demonstrate the utility of the serotype I feline coronavirus replicon system for antiviral screening as well as to study this virus in general. We propose several compounds representing promising candidates for future clinical trials and ultimately with the potential to save cats suffering from FIP.
Asunto(s)
Antivirales , Coronavirus Felino , Peritonitis Infecciosa Felina , Lactamas , Leucina , Ácidos Sulfónicos , Animales , Gatos , Antivirales/farmacología , Coronavirus Felino/efectos de los fármacos , Peritonitis Infecciosa Felina/tratamiento farmacológico , Lactamas/farmacología , Leucina/análogos & derivados , ARN , Ácidos Sulfónicos/farmacologíaRESUMEN
The neuronal composition of homologous brain regions in different primates is important for understanding their processing capacities. Primary visual cortex (V1) has been widely studied in different members of the catarrhines. Neuronal density is considered to be central in defining the structure-function relationship. In human, there are large variations in the reported neuronal density from prior studies. We found the neuronal density in human V1 was 79,000 neurons/mm3, which is 35% of the neuronal density previously determined in macaque V1. Laminar density was proportionally similar between human and macaque. In V1, the ocular dominance column (ODC) contains the circuits for the emergence of orientation preference and spatial processing of a point image in many mammalian species. Analysis of the total neurons in an ODC and of the full number of neurons in macular vision (the central 15°) indicates that humans have 1.3× more neurons than macaques even though the density of neurons in macaque is 3× the density in human V1. We propose that the number of neurons in a functional processing unit rather than the number of neurons under a mm2 of cortex is more appropriate for cortical comparisons across species.
Asunto(s)
Macaca , Corteza Visual , Animales , Humanos , Corteza Visual/fisiología , Neuronas/fisiología , Visión Ocular , Vías Visuales/fisiología , MamíferosRESUMEN
Porcine epidemic diarrhea virus is a swine pathogen that has been responsible for significant animal and economic losses worldwide in recent years. In this manuscript, we report the generation of a reverse genetics system C(RGS) for the highly virulent US PEDV strain Minnesota (PEDV-MN; GenBank accession number KF468752), which was based on the assembly and cloning of synthetic DNA, using vaccinia virus as a cloning vector. Viral rescue was only possible following the substitution of 2 nucleotides within the 5'UTR and 2 additional nucleotides within the spike gene, based on the sequence of the cell culture-adapted strains. Besides displaying a highly pathogenic phenotype in newborn piglets, in comparison with the parental virus, the rescued recombinant PEDV-MN was used to confirm that the PEDV spike gene has an important role in PEDV virulence and that the impact of an intact PEDV ORF3 on viral pathogenicity is modest. Moreover, a chimeric virus with a TGEV spike gene in the PEDV backbone generated with RGS was able to replicate efficiently in vivo and could be readily transmitted between piglets. Although this chimeric virus did not cause severe disease upon the initial infection of piglets, there was evidence of increasing pathogenicity upon transmission to contact piglets. The RGS described in this study constitutes a powerful tool with which to study PEDV pathogenesis and can be used to generate vaccines against porcine enteric coronaviruses. IMPORTANCE PEDV is a swine pathogen that is responsible for significant animal and economic losses worldwide. Highly pathogenic variants can lead to a mortality rate of up to 100% in newborn piglets. The generation of a reverse genetics system for a highly virulent PEDV strain originating from the United States is an important step in phenotypically characterizing PEDV. The synthetic PEDV mirrored the authentic isolate and displayed a highly pathogenic phenotype in newborn piglets. With this system, it was possible to characterize potential viral virulence factors. Our data revealed that an accessory gene (ORF3) has a limited impact on pathogenicity. However, as it is also now known for many coronaviruses, the PEDV spike gene is one of the main determinants of pathogenicity. Finally, we show that the spike gene of another porcine coronavirus, namely, TGEV, can be accommodated in the PEDV genome background, suggesting that similar viruses can emerge in the field via recombination.
Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , Estados Unidos , Porcinos , Virulencia/genética , Virus de la Diarrea Epidémica Porcina/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Genética Inversa , Infecciones por Coronavirus/prevención & control , Nucleótidos , DiarreaRESUMEN
Since its emergence in December 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread globally and become a major public health burden. Despite its close phylogenetic relationship to SARS-CoV, SARS-CoV-2 exhibits increased human-to-human transmission dynamics, likely due to efficient early replication in the upper respiratory epithelium of infected individuals. Since different temperatures encountered in the human upper and lower respiratory tract (33°C and 37°C, respectively) have been shown to affect the replication kinetics of several respiratory viruses, as well as host innate immune response dynamics, we investigated the impact of temperature on SARS-CoV-2 and SARS-CoV infection using the primary human airway epithelial cell culture model. SARS-CoV-2, in contrast to SARS-CoV, replicated to higher titers when infections were performed at 33°C rather than 37°C. Although both viruses were highly sensitive to type I and type III interferon pretreatment, a detailed time-resolved transcriptome analysis revealed temperature-dependent interferon and pro-inflammatory responses induced by SARS-CoV-2 that were inversely proportional to its replication efficiency at 33°C or 37°C. These data provide crucial insight on pivotal virus-host interaction dynamics and are in line with characteristic clinical features of SARS-CoV-2 and SARS-CoV, as well as their respective transmission efficiencies.
Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación Viral de la Expresión Génica/genética , SARS-CoV-2/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Animales , Antivirales/farmacología , Células Cultivadas , Chlorocebus aethiops , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/virología , Regulación Viral de la Expresión Génica/efectos de los fármacos , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Humanos , Interferones/farmacología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Especificidad de la Especie , Temperatura , Células Vero , Replicación Viral/efectos de los fármacos , Replicación Viral/genéticaRESUMEN
Over the past 20 years, 3 highly pathogenic human coronaviruses (HCoVs) have emerged-Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and, most recently, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)-demonstrating that coronaviruses (CoVs) pose a serious threat to human health and highlighting the importance of developing effective therapies against them. Similar to other viruses, CoVs are dependent on host factors for their survival and replication. We hypothesized that evolutionarily distinct CoVs may exploit similar host factors and pathways to support their replication cycles. Herein, we conducted 2 independent genome-wide CRISPR/Cas-9 knockout (KO) screens to identify MERS-CoV and HCoV-229E host dependency factors (HDFs) required for HCoV replication in the human Huh7 cell line. Top scoring genes were further validated and assessed in the context of MERS-CoV and HCoV-229E infection as well as SARS-CoV and SARS-CoV-2 infection. Strikingly, we found that several autophagy-related genes, including TMEM41B, MINAR1, and the immunophilin FKBP8, were common host factors required for pan-CoV replication. Importantly, inhibition of the immunophilin protein family with the compounds cyclosporine A, and the nonimmunosuppressive derivative alisporivir, resulted in dose-dependent inhibition of CoV replication in primary human nasal epithelial cell cultures, which recapitulate the natural site of virus replication. Overall, we identified host factors that are crucial for CoV replication and demonstrated that these factors constitute potential targets for therapeutic intervention by clinically approved drugs.
Asunto(s)
Autofagia/genética , Sistemas CRISPR-Cas , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , SARS-CoV-2/genética , Antivirales/farmacología , Técnicas de Silenciamiento del Gen , Interacciones Huésped-Patógeno , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Replicación ViralRESUMEN
Layer 6 appears to perform a very important role in the function of macaque primary visual cortex, V1, but not enough is understood about the functional characteristics of neurons in the layer 6 population. It is unclear to what extent the population is homogeneous with respect to their visual properties or if one can identify distinct subpopulations. Here we performed a cluster analysis based on measurements of the responses of single neurons in layer 6 of primary visual cortex in male macaque monkeys (Macaca fascicularis) to achromatic grating stimuli that varied in orientation, direction of motion, spatial and temporal frequency, and contrast. The visual stimuli were presented in a stimulus window that was also varied in size. Using the responses to parametric variation in these stimulus variables, we extracted a number of tuning response measures and used them in the cluster analysis. Six main clusters emerged along with some smaller clusters. Additionally, we asked whether parameter distributions from each of the clusters were statistically different. There were clear separations of parameters between some of the clusters, particularly for f1/f0 ratio, direction selectivity, and temporal frequency bandwidth, but other dimensions also showed differences between clusters. Our data suggest that in layer 6 there are multiple parallel circuits that provide information about different aspects of the visual stimulus.SIGNIFICANCE STATEMENT The cortex is multilayered and is involved in many high-level computations. In the current study, we have asked whether there are subpopulations of neurons, clusters, in layer 6 of cortex with different functional tuning properties that provide information about different aspects of the visual image. We identified six major functional clusters within layer 6. These findings show that there is much more complexity to the circuits in cortex than previously demonstrated and open up a new avenue for experimental investigation within layers of other cortical areas and for the elaboration of models of circuit function that incorporate many parallel pathways with different functional roles.
Asunto(s)
Neuronas/fisiología , Corteza Visual/citología , Corteza Visual/fisiología , Animales , Mapeo Encefálico , Análisis por Conglomerados , Sensibilidad de Contraste , Electrocardiografía , Potenciales Evocados Visuales , Macaca fascicularis , Masculino , Percepción de Movimiento/fisiología , Orientación , Estimulación Luminosa , Percepción Espacial/fisiología , Percepción del Tiempo/fisiologíaRESUMEN
Most single units recorded from macaque secondary visual cortex (V2) respond with higher firing rates to synthetic texture images containing "naturalistic" higher-order statistics than to spectrally matched "noise" images lacking these statistics. In contrast, few single units in V1 show this property. We explored how the strength and dynamics of response vary across the different layers of visual cortex by recording multiunit (defined as high-frequency power in the local field potential) and gamma-band activity evoked by brief presentations of naturalistic and noise images in V1 and V2 of anesthetized macaque monkeys of both sexes. As previously reported, recordings in V2 showed consistently stronger responses to naturalistic texture than to spectrally matched noise. In contrast to single-unit recordings, V1 multiunit activity showed a preference for images with naturalistic statistics, and in gamma-band activity this preference was comparable across V1 and V2. Sensitivity to naturalistic image structure was strongest in the supragranular and infragranular layers of V1, but weak in granular layers, suggesting that it might reflect feedback from V2. Response timing was consistent with this idea. Visual responses appeared first in V1, followed by V2. Sensitivity to naturalistic texture emerged first in V2, followed by the supragranular and infragranular layers of V1, and finally in the granular layers of V1. Our results demonstrate laminar differences in the encoding of higher-order statistics of natural texture, and suggest that this sensitivity first arises in V2 and is fed back to modulate activity in V1.SIGNIFICANCE STATEMENT The circuit mechanisms responsible for visual representations of intermediate complexity are largely unknown. We used a well validated set of synthetic texture stimuli to probe the temporal and laminar profile of sensitivity to the higher-order statistical structure of natural images. We found that this sensitivity emerges first and most strongly in V2 but soon after in V1. However, sensitivity in V1 is higher in the laminae (extragranular) and recording modalities (local field potential) most likely affected by V2 connections, suggesting a feedback origin. Our results show how sensitivity to naturalistic image structure emerges across time and circuitry in the early visual cortex.
Asunto(s)
Reconocimiento Visual de Modelos/fisiología , Corteza Visual/fisiología , Animales , Electroencefalografía , Fenómenos Electrofisiológicos/fisiología , Potenciales Evocados Visuales/fisiología , Femenino , Ritmo Gamma , Macaca fascicularis , Macaca nemestrina , Masculino , Estimulación Luminosa , Tiempo de Reacción , Corteza Visual/anatomía & histología , Campos Visuales , Vías Visuales/fisiologíaRESUMEN
The Kv3.1b potassium channel subunit is associated with narrow spike widths and fast-spiking properties. In macaque primary visual cortex (V1), subsets of neurons have previously been found to be Kv3.1b-immunoreactive (ir) but not parvalbumin (PV)-ir or not GABA-ir, suggesting that they may be both fast-spiking and excitatory. This population includes Meynert cells, the large layer 5/6 pyramidal neurons that are also labeled by the neurofilament antibody SMI-32. In the present study, triple immunofluorescence labeling and confocal microscopy were used to measure the distribution of Kv3.1b-ir, non-PV-ir, non-GABA-ir neurons across cortical depth in V1, and to determine whether, like the Meynert cells, other Kv3.1b-ir excitatory neurons were also SMI-32-ir pyramidal neurons. We found that Kv3.1b-ir, non-PV-ir, non-GABA-ir neurons were most prevalent in the M pathway-associated layers 4 Cα and 4B. GABAergic neurons accounted for a smaller fraction (11%) of the total neuronal population across layers 1-6 than has previously been reported. Of Kv3.1b-ir neurons, PV expression reliably indicated GABA expression. Kv3.1b-ir, non-PV-ir neurons varied in SMI-32 coimmunoreactivity. The results suggest the existence of a heterogeneous population of excitatory neurons in macaque V1 with the potential for sustained high firing rates, and these neurons were particularly abundant in layers 4B and 4 Cα.
Asunto(s)
Proteínas de Neurofilamentos/análisis , Neuronas/citología , Parvalbúminas/análisis , Canales de Potasio Shaw/análisis , Corteza Visual/citología , Ácido gamma-Aminobutírico/análisis , Animales , Recuento de Células , Macaca fascicularis , Macaca mulatta , Masculino , Neuronas/metabolismo , Corteza Visual/metabolismoRESUMEN
One of the underlying principles of how mammalian circuits are constructed is the relative influence of feedforward to recurrent synaptic drive. It has been dogma in sensory systems that the thalamic feedforward input is relatively weak and that there is a large amplification of the input signal by recurrent feedback. Here we show that in trichromatic primates there is a major feedforward input to layer 4C of primary visual cortex. Using a combination of 3D-electron-microscopy and 3D-confocal imaging of thalamic boutons we found that the average feedforward contribution was about 20% of the total excitatory input in the parvocellular (P) pathway, about 3 times the currently accepted values for primates. In the magnocellular (M) pathway it was around 15%, nearly twice the currently accepted values. New methods showed the total synaptic and cell densities were as much as 150% of currently accepted values. The new estimates of contributions of feedforward synaptic inputs into visual cortex call for a major revision of the design of the canonical cortical circuit.
Asunto(s)
Tálamo/fisiología , Corteza Visual/fisiología , Vías Visuales/fisiología , Animales , Femenino , Macaca fascicularis , Masculino , Terminales Presinápticos/fisiología , Terminales Presinápticos/ultraestructura , Primates , Tálamo/ultraestructura , Corteza Visual/ultraestructura , Vías Visuales/ultraestructuraRESUMEN
In amblyopia, abnormal visual experience leads to an extreme form of eye dominance, in which vision through the nondominant eye is degraded. A key aspect of this disorder is perceptual suppression: the image seen by the stronger eye often dominates during binocular viewing, blocking the image of the weaker eye from reaching awareness. Interocular suppression is the focus of ongoing work aimed at understanding and treating amblyopia, yet its physiological basis remains unknown. We measured binocular interactions in visual cortex of anesthetized amblyopic monkeys (female Macaca nemestrina), using 96-channel "Utah" arrays to record from populations of neurons in V1 and V2. In an experiment reported recently (Hallum et al., 2017), we found that reduced excitatory input from the amblyopic eye (AE) revealed a form of balanced binocular suppression that is unaltered in amblyopia. Here, we report on the modulation of the gain of excitatory signals from the AE by signals from its dominant fellow eye (FE). Using a dichoptic masking technique, we found that AE responses to grating stimuli were attenuated by the presentation of a noise mask to the FE, as in a normal control animal. Responses to FE stimuli, by contrast, could not be masked from the AE. We conclude that a weakened ability of the amblyopic eye to modulate cortical response gain creates an imbalance of suppression that favors the dominant eye.SIGNIFICANCE STATEMENT In amblyopia, vision in one eye is impaired as a result of abnormal early visual experience. Behavioral observations in humans with amblyopia suggest that much of their visual loss is due to active suppression of their amblyopic eye. Here we describe experiments in which we studied binocular interactions in macaques with experimentally induced amblyopia. In normal monkeys, the gain of neuronal response to stimulation of one eye is modulated by contrast in the other eye, but in monkeys with amblyopia the balance of gain modulation is altered so that the weaker, amblyopic eye has little effect while the stronger fellow eye has a strong effect. This asymmetric suppression may be a key component of the perceptual losses in amblyopia.
Asunto(s)
Ambliopía/fisiopatología , Predominio Ocular , Inhibición Neural , Enmascaramiento Perceptual , Estimulación Luminosa , Visión Binocular , Corteza Visual/fisiología , Animales , Femenino , Macaca nemestrina , Red Nerviosa/fisiopatologíaRESUMEN
In amblyopia, a visual disorder caused by abnormal visual experience during development, the amblyopic eye (AE) loses visual sensitivity whereas the fellow eye (FE) is largely unaffected. Binocular vision in amblyopes is often disrupted by interocular suppression. We used 96-electrode arrays to record neurons and neuronal groups in areas V1 and V2 of six female macaque monkeys (Macaca nemestrina) made amblyopic by artificial strabismus or anisometropia in early life, as well as two visually normal female controls. To measure suppressive binocular interactions directly, we recorded neuronal responses to dichoptic stimulation. We stimulated both eyes simultaneously with large sinusoidal gratings, controlling their contrast independently with raised-cosine modulators of different orientations and spatial frequencies. We modeled each eye's receptive field at each cortical site using a difference of Gaussian envelopes and derived estimates of the strength of central excitation and surround suppression. We used these estimates to calculate ocular dominance separately for excitation and suppression. Excitatory drive from the FE dominated amblyopic visual cortex, especially in more severe amblyopes, but suppression from both the FE and AEs was prevalent in all animals. This imbalance created strong interocular suppression in deep amblyopes: increasing contrast in the AE decreased responses at binocular cortical sites. These response patterns reveal mechanisms that likely contribute to the interocular suppression that disrupts vision in amblyopes.SIGNIFICANCE STATEMENT Amblyopia is a developmental visual disorder that alters both monocular vision and binocular interaction. Using microelectrode arrays, we examined binocular interaction in primary visual cortex and V2 of six amblyopic macaque monkeys (Macaca nemestrina) and two visually normal controls. By stimulating the eyes dichoptically, we showed that, in amblyopic cortex, the binocular combination of signals is altered. The excitatory influence of the two eyes is imbalanced to a degree that can be predicted from the severity of amblyopia, whereas suppression from both eyes is prevalent in all animals. This altered balance of excitation and suppression reflects mechanisms that may contribute to the interocular perceptual suppression that disrupts vision in amblyopes.
Asunto(s)
Ambliopía/fisiopatología , Predominio Ocular/fisiología , Estimulación Luminosa/métodos , Corteza Visual/fisiopatología , Campos Visuales/fisiología , Animales , Femenino , Macaca nemestrina , Microelectrodos , Estrabismo/fisiopatologíaRESUMEN
Tripartite motif protein 22 (TRIM22) is a novel interferon-induced protein that potently inhibits the replication of evolutionarily diverse viruses, including HIV-1. Altered TRIM22 expression is also associated with diseases, such as multiple sclerosis, cancer, and autoimmunity. The factors that influence TRIM22 expression and antiviral activity are largely unknown. In this study, we adopted an evolution-guided functional approach to identify potential genetic determinants of TRIM22 function. Evolutionary analysis of TRIM22 from mammals spanning >100 million years demonstrated that TRIM22 evolution has been shaped by ancient and variable positive selection. We showed that positive selection is operating on multiple TRIM22 residues that cluster in putative functional regions and that some are predicted to be functionally damaging. Interestingly, the second most prevalent TRIM22 SNP in humans (rs1063303) is located at one of these positively selected sites. We showed that the frequency of rs1063303:G>C varies up to 10-fold between ethnicities and that in some ethnicities SNP rs1063303:G>C is being actively maintained in the population. The SNP rs1063303:G>C variant also had an inverse functional impact where it increased TRIM22 expression and decreased the antiviral activity of TRIM22. Taken together, our data characterize the extensive genetic variation in TRIM22 and identify rs1063303:G>C as a highly prevalent SNP that influences its function.
Asunto(s)
Adaptación Biológica , Resistencia a la Enfermedad/genética , Evolución Molecular , Polimorfismo de Nucleótido Simple , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Virosis/genética , Animales , Línea Celular , Humanos , Mamíferos , Antígenos de Histocompatibilidad Menor , Modelos Moleculares , Filogenia , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Proteínas Represoras/química , Selección Genética , Proteínas de Motivos TripartitosRESUMEN
Amblyopia is a developmental disorder that results from abnormal visual experience in early life. Amblyopia typically reduces visual performance in one eye. We studied the representation of visual motion information in area MT and nearby extrastriate visual areas in two monkeys made amblyopic by creating an artificial strabismus in early life, and in a single age-matched control monkey. Tested monocularly, cortical responses to moving dot patterns, gratings, and plaids were qualitatively normal in awake, fixating amblyopic monkeys, with primarily subtle differences between the eyes. However, the number of binocularly driven neurons was substantially lower than normal; of the neurons driven predominantly by one eye, the great majority responded only to stimuli presented to the fellow eye. The small population driven by the amblyopic eye showed reduced coherence sensitivity and a preference for faster speeds in much the same way as behavioral deficits. We conclude that, while we do find important differences between neurons driven by the two eyes, amblyopia does not lead to a large scale reorganization of visual receptive fields in the dorsal stream when tested through the amblyopic eye, but rather creates a substantial shift in eye preference toward the fellow eye.
RESUMEN
The zoonotic emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the ensuing coronavirus disease 2019 (COVID-19) pandemic have profoundly affected our society. The rapid spread and continuous evolution of new SARS-CoV-2 variants continue to threaten global public health. Recent scientific advances have dissected many of the molecular and cellular mechanisms involved in coronavirus infections, and large-scale screens have uncovered novel host-cell factors that are vitally important for the virus life cycle. In this Review, we provide an updated summary of the SARS-CoV-2 life cycle, gene function and virus-host interactions, including recent landmark findings on general aspects of coronavirus biology and newly discovered host factors necessary for virus replication.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Replicación Viral , BiologíaRESUMEN
Approved vaccines are effective against severe COVID-19, but broader immunity is needed against new variants and transmission. Therefore, we developed genome-modified live-attenuated vaccines (LAV) by recoding the SARS-CoV-2 genome, including 'one-to-stop' (OTS) codons, disabling Nsp1 translational repression and removing ORF6, 7ab and 8 to boost host immune responses, as well as the spike polybasic cleavage site to optimize the safety profile. The resulting OTS-modified SARS-CoV-2 LAVs, designated as OTS-206 and OTS-228, are genetically stable and can be intranasally administered, while being adjustable and sustainable regarding the level of attenuation. OTS-228 exhibits an optimal safety profile in preclinical animal models, with no side effects or detectable transmission. A single-dose vaccination induces a sterilizing immunity in vivo against homologous WT SARS-CoV-2 challenge infection and a broad protection against Omicron BA.2, BA.5 and XBB.1.5, with reduced transmission. Finally, this promising LAV approach could be applicable to other emerging viruses.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Genoma Viral , SARS-CoV-2 , Vacunas Atenuadas , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/genética , Vacunas Atenuadas/administración & dosificación , SARS-CoV-2/genética , SARS-CoV-2/inmunología , COVID-19/prevención & control , COVID-19/transmisión , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/genética , Animales , Genoma Viral/genética , Humanos , Ratones , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Femenino , Chlorocebus aethiops , Modelos Animales de Enfermedad , Células Vero , Anticuerpos Neutralizantes/inmunologíaRESUMEN
Early region 1A (E1A) of human adenovirus (HAdV) has been the focus of over 30 years of investigation and is required for the oncogenic capacity of HAdV in rodents. Alternative splicing of the E1A transcript generates mRNAs encoding multiple E1A proteins. The 55-residue (55R) E1A protein, which is encoded by the 9S mRNA, is particularly interesting due to the unique properties it displays relative to all other E1A isoforms. 55R E1A does not contain any of the conserved regions (CRs) present in the other E1A isoforms. The C-terminal region of the 55R E1A protein contains a unique sequence compared to all other E1A isoforms, which results from a frameshift generated by alternative splicing. The 55R E1A protein is thought to be produced preferentially at the late stages of infection. Here we report the first study to directly investigate the function of the species C HAdV 55R E1A protein during infection. Polyclonal rabbit antibodies (Abs) have been generated that are capable of immunoprecipitating HAdV-2 55R E1A. These Abs can also detect HAdV-2 55R E1A by immunoblotting and indirect immunofluorescence assay. These studies indicate that 55R E1A is expressed late and is localized to the cytoplasm and to the nucleus. 55R E1A was able to activate the expression of viral genes during infection and could also promote productive replication of species C HAdV. 55R E1A was also found to interact with the S8 component of the proteasome, and knockdown of S8 was detrimental to viral replication dependent on 55R E1A.
Asunto(s)
Proteínas E1A de Adenovirus/genética , Proteínas E1A de Adenovirus/metabolismo , Adenovirus Humanos/genética , ARN Mensajero/química , ARN Viral/química , Adenosina Trifosfatasas/metabolismo , Proteínas E1A de Adenovirus/inmunología , Adenovirus Humanos/inmunología , Secuencia de Aminoácidos , Anticuerpos Antivirales/inmunología , Línea Celular , Núcleo Celular/metabolismo , Inhibición de Contacto , Citoplasma/metabolismo , Regulación Viral de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Unión Proteica , Transporte de Proteínas , Transcripción Genética , Replicación Viral/genéticaRESUMEN
The recurrence of zoonotic transmission events highlights the need for novel treatment strategies against emerging coronaviruses (CoVs), namely SARS-CoV, MERS-CoV and most notably SARS-CoV-2. Our recently performed genome-wide CRISPR knockout screen revealed a list of conserved pan-coronavirus as well as MERS-CoV or HCoV-229E-specific host dependency factors (HDF) essential during the viral life cycle. Intriguingly, we identified the macroautophagy/autophagy pathway-regulating immunophilins FKBP8, TMEM41B, and MINAR1 as conserved MERS-CoV, HCoV-229E, SARS-CoV, and SARS-CoV-2 host factors, which further constitute potential targets for therapeutic intervention by clinically approved drugs.