Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Genet Med ; 20(10): 1216-1223, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29323667

RESUMEN

PURPOSE: Given the rapid pace of discovery in rare disease genomics, it is likely that improvements in diagnostic yield can be made by systematically reanalyzing previously generated genomic sequence data in light of new knowledge. METHODS: We tested this hypothesis in the United Kingdom-wide Deciphering Developmental Disorders study, where in 2014 we reported a diagnostic yield of 27% through whole-exome sequencing of 1,133 children with severe developmental disorders and their parents. We reanalyzed existing data using improved variant calling methodologies, novel variant detection algorithms, updated variant annotation, evidence-based filtering strategies, and newly discovered disease-associated genes. RESULTS: We are now able to diagnose an additional 182 individuals, taking our overall diagnostic yield to 454/1,133 (40%), and another 43 (4%) have a finding of uncertain clinical significance. The majority of these new diagnoses are due to novel developmental disorder-associated genes discovered since our original publication. CONCLUSION: This study highlights the importance of coupling large-scale research with clinical practice, and of discussing the possibility of iterative reanalysis and recontact with patients and health professionals at an early stage. We estimate that implementing parent-offspring whole-exome sequencing as a first-line diagnostic test for developmental disorders would diagnose >50% of patients.


Asunto(s)
Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Secuenciación del Exoma/métodos , Genoma Humano/genética , Discapacidades del Desarrollo/patología , Exoma , Femenino , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Genómica , Humanos , Masculino , Enfermedades Raras , Reino Unido
2.
Neuropharmacology ; 50(1): 89-97, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16260005

RESUMEN

TRPM2, a member of the TRP ion channel family, is expressed both in the brain and immune cells of the monocyte lineage. Functionally, it is unique in its activation by intracellular ADP-ribose and both oxidative and nitrosative stress. To date studies of this channel have concentrated on human recombinant channels and rodent native preparations. This provides the potential for cross-species complications in the interpretation of native tissue observations based on recombinant channel phenotype. Consequently, we have cloned and heterologously expressed rat TRPM2 (rTRPM2) in HEK293 cells. We find that, like hTRPM2, it responds to intracellular ADP-ribose in a manner dependent on extracellular Ca(2+). At the single channel level rTRPM2 is a slow gating, large conductance (84pS) channel that rapidly runs down in isolated membrane patches. Pharmacologically, rTRPM2 is rapidly and irreversibly blocked by clotrimazole (10muM), thus resembling hTRPM2 but not the TRPM2-like current of the rat-derived insulinoma CRI-G1, which exhibits reversible inhibition by this agent. We show that cultured rat striatal neurones exhibit an ADP-ribose-activated conductance at both the whole cell and single channel level. Pharmacologically this neuronal current can be irreversibly inhibited by clotrimazole. It is also sensitive to removal of extracellular Ca(2+), suggesting that it is mediated by TRPM2-containing channels. These data provide a functional characterisation of heterologously expressed rTRPM2 and demonstrate that, in addition to the previous descriptions in immune cells, microglia and insulinomas, a TRPM2-like conductance can be found in neurones derived from the rodent CNS.


Asunto(s)
Neostriado/metabolismo , Neuronas/metabolismo , Proteínas Recombinantes/metabolismo , Canales Catiónicos TRPM/metabolismo , Adenosina Difosfato Ribosa/farmacología , Animales , Línea Celular Tumoral , Células Cultivadas , Clonación Molecular , ADN/biosíntesis , ADN/genética , Electrofisiología , Peróxido de Hidrógeno/farmacología , Indicadores y Reactivos , Microscopía Fluorescente , Neostriado/citología , Estrés Oxidativo/fisiología , Técnicas de Placa-Clamp , Ratas , Canales Catiónicos TRPM/efectos de los fármacos , Transfección
3.
Brain Res Mol Brain Res ; 109(1-2): 95-104, 2002 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-12531519

RESUMEN

The mammalian homologues of the Drosophila transient receptor potential (TRP) channel are plasma membrane proteins involved in the regulation of cellular Ca(2+) influx. These ion channels can be activated subsequent to either depletion of Ca(2+) from internal stores or through receptor-mediated processes. The mRNA expression patterns of several individual mammalian short transient receptor potential channels (TRPCs) have been described. Cross-comparisons between these data, however, are at best difficult predominantly due to the non-quantitative methods used. Furthermore there is limited data on the expression of TRPC family members in human tissues. In the present study we used a single technique, namely TaqMan real-time quantitative RT-PCR, to investigate the mRNA distribution of human TRPC1, TRPC3, TRPC4, TRPC5, TRPC6 and TRPC7 (hTRPCs) in discrete human brain areas, peripheral tissues as well as a panel of cell-lines. All hTRPCs studied were widely expressed within CNS and significant peripheral expression was often observed. Despite this, each channel exhibited a distinctive hallmark distribution profile. hTRPC1 was widely expressed in CNS and peripheral tissues, whereas hTRPC3 and hTRPC5 were predominantly expressed in tissues of CNS. hTRPC4 mRNA was detected in CNS and certain peripheral tissues such as bone, heart and prostate. hTRPC6 was homogeneously expressed throughout the CNS and peripheral tissues with the highest levels in placenta and lung. hTRPC7 mRNA was also broadly expressed in CNS as well as some peripheral tissues. The pattern of expression of the TRPCs was quite different in the various cell lines examined. TRPC3 and TRPC6 were selectively present in HEK-293 cells whilst TRPC1 was broadly distributed in the cell lines analyzed. In contrast TRPC4 and TRPC5 mRNAs were predominantly expressed in HK-2 and HEK-293 cell lines respectively. TRPC7 was selectively expressed in COS-1, COS-7 and HK-2 cell lines. These results show tissue- and cell-specific co-expression of multiple TRPC forms indicating widespread potential for formation of heteromeric channels. These data will be useful in the complex task of relating channel subunit composition to function in native cells.


Asunto(s)
Canales de Calcio/metabolismo , Sistema Nervioso Central/metabolismo , ARN Mensajero/metabolismo , Animales , Canales de Calcio/genética , Línea Celular , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Datos de Secuencia Molecular , Canales Catiónicos TRPC , Distribución Tisular
4.
Eur J Pharmacol ; 604(1-3): 1-11, 2009 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-19100256

RESUMEN

The human 5-hydroxytryptamine (5-HT(4)) receptor is encoded by a highly complex gene which gives rise to at least 10 distinct splice variants. However, the functional relevance of these variants is unknown. In rat, only three such variants have been identified, 5-HT(4a) (r5-HT(4a)), 5-HT(4b) (r5-HT(4b)) and 5-HT(4e) (r5-HT(4e)). In the current study we identify and characterise the pharmacology of a novel rat splice variant (r5-HT(4c1)) and present the first comprehensive analysis of 5-HT(4) splice variant mRNA expression levels throughout the rat gastrointestinal tract. In addition, we describe preliminary characterisation of the first 5-HT(4) splice variant specific antibodies. In transfected cells, r5-HT(4c1) receptor exhibited similar binding properties to r5-HT(4a) and r5-HT(4b). Functional studies showed that 5-HT(4) agonists prucalopride (4-amino-5-chloro-2,3-dihydro-N-[1-(3-methoxypropyl)-4-piperidinyl]-7-benzofuran carboxamide monohydrochloride and renzapride (+/-)-endo-4-amino-5-chloro-2-methoxy-N-(1-azabicyclo[3.3.1]non-4-yl)benzamide monohydrochloride) acted as partial agonists at r5-HT(4c1), but full agonists at r5-HT(4a) and r5-HT(4b). Moreover, in contrast to r5-HT(4a) and r5-HT(4b), r5-HT(4c1) was not constitutively active. TaqMan mRNA analysis showed that r5-HT(4a) expression in brain and dorsal root ganglion exceeded that in the gastrointestinal tract, whilst the reverse was true for r5-HT(4b) and r5-HT(4c1). mRNA expression of each variant also increased distally throughout the gastrointestinal tract with the highest levels in the colon. r5-HT(4a) and r5-HT(4b) specific immunoreactivity was abundant on enteric neurons in jejunum, ileum and colon as well as neurons and satellite cells of the dorsal root ganglion. Only r5-HT(4b) immunoreactivity was observed on endocrine cells in the duodenum. These data could have implications in rat models and aid understanding of 5-HT(4) splice variant function.


Asunto(s)
Empalme Alternativo , Anticuerpos Monoclonales/farmacología , Receptores de Serotonina 5-HT4/genética , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Secuencia de Bases , Unión Competitiva , Línea Celular , Membrana Celular/metabolismo , Clonación Molecular , AMP Cíclico/metabolismo , Femenino , Tracto Gastrointestinal/metabolismo , Humanos , Inmunohistoquímica , Masculino , Datos de Secuencia Molecular , Isoformas de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Conejos , Ensayo de Unión Radioligante , Ratas , Ratas Sprague-Dawley , Receptores de Serotonina 5-HT4/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Agonistas de Receptores de Serotonina/farmacología , Transfección
5.
J Recept Signal Transduct Res ; 26(3): 159-78, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16777713

RESUMEN

Eight members of the TRP-melastatin (TRPM) subfamily have been identified, whose physiological functions and distribution are poorly characterized. Although tissue expression and distribution patterns have been reported for individual TRPM channels, comparisons between individual studies are not possible because of variations in analysis techniques and tissue selection. We report here a comparative analysis of the expression patterns of all of the human TRPM channels in selected peripheral tissues and the central nervous system (CNS) using two distinct but complimentary approaches: TaqMan and SYBR Green real-time quantitative reverse transcription polymerase chain reaction (RT-PCR). These techniques generated comparative distribution profiles and demonstrated tissue-specific co-expression of TRPM mRNA species, indicating significant potential for the formation of heteromeric channels. TRPM channels 2, 4, 5, 6, and 7 in contrast to 1, 3, and 8 are widely distributed in the CNS and periphery. The tissues demonstrating highest expression for individual family members were brain (TRPM1), brain and bone marrow (TRPM2), brain and pituitary (TRPM3), intestine and prostate (TRPM4), intestine, pancreas, and prostate (TRPM5), intestine and brain (TRPM6), heart, pituitary, bone, and adipose tissue (TRPM7), and prostate and liver (TRPM8). The data reported here will guide the elucidation of TRPM channel physiological functions.


Asunto(s)
Canales Catiónicos TRPM/genética , Secuencia de Bases , Cartilla de ADN/genética , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/estadística & datos numéricos , Sensibilidad y Especificidad , Canales Catiónicos TRPM/clasificación , Distribución Tisular
6.
J Biol Chem ; 277(14): 12302-9, 2002 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-11805119

RESUMEN

The regulation and control of plasma membrane Ca(2+) fluxes is critical for the initiation and maintenance of a variety of signal transduction cascades. Recently, the study of transient receptor potential channels (TRPs) has suggested that these proteins have an important role to play in mediating capacitative calcium entry. In this study, we have isolated a cDNA from human brain that encodes a novel transient receptor potential channel termed human TRP7 (hTRP7). hTRP7 is a member of the short TRP channel family and is 98% homologous to mouse TRP7 (mTRP7). At the mRNA level hTRP7 was widely expressed in tissues of the central nervous system, as well as some peripheral tissues such as pituitary gland and kidney. However, in contrast to mTRP7, which is highly expressed in heart and lung, hTRP7 was undetectable in these tissues. For functional analysis, we heterologously expressed hTRP7 cDNA in an human embryonic kidney cell line. In comparison with untransfected cells depletion of intracellular calcium stores in hTRP7-expressing cells, using either carbachol or thapsigargin, produced a marked increase in the subsequent level of Ca(2+) influx. This increased Ca(2+) entry was blocked by inhibitors of capacitative calcium entry such as La(3+) and Gd(3+). Furthermore, transient transfection of an hTRP7 antisense expression construct into cells expressing hTRP7 eliminated the augmented store-operated Ca(2+) entry. Our findings suggest that hTRP7 is a store-operated calcium channel, a finding in stark contrast to the mouse orthologue, mTRP7, which is reported to enhance Ca(2+) influx independently of store depletion, and suggests that human and mouse TRP7 channels may fulfil different physiological roles.


Asunto(s)
Calcio/metabolismo , Canales Iónicos/química , Proteínas de la Membrana , Secuencia de Aminoácidos , Encéfalo/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Línea Celular , Sistema Nervioso Central/embriología , Clonación Molecular , ADN Complementario/metabolismo , Inhibidores Enzimáticos/farmacología , Epítopos , Exones , Femenino , Biblioteca de Genes , Humanos , Imidazoles/farmacología , Canales Iónicos/metabolismo , Riñón/metabolismo , Masculino , Manganeso/metabolismo , Datos de Secuencia Molecular , Oligonucleótidos Antisentido/farmacología , Filogenia , Hipófisis/metabolismo , Unión Proteica , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Canales Catiónicos TRPM , Tapsigargina/farmacología , Factores de Tiempo , Distribución Tisular , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA