Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 79(11): 549, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36241929

RESUMEN

Cell fusion of female and male gametes is the climax of sexual reproduction. In many organisms, the Hapless 2 (HAP2) family of proteins play a critical role in gamete fusion. We find that Plasmodium falciparum, the causative agent of human malaria, expresses two HAP2 proteins: PfHAP2 and PfHAP2p. These proteins are present in stage V gametocytes and localize throughout the flagellum of male gametes. Gene deletion analysis and genetic crosses show that PfHAP2 and PfHAP2p individually are essential for male fertility and thereby, parasite transmission to the mosquito. Using a cell fusion assay, we demonstrate that PfHAP2 and PfHAP2p are both authentic plasma membrane fusogens. Our results establish nonredundant essential roles for PfHAP2 and PfHAP2p in mediating gamete fusion in Plasmodium and suggest avenues in the design of novel strategies to prevent malaria parasite transmission from humans to mosquitoes.


Asunto(s)
Malaria , Parásitos , Animales , Membrana Celular , Femenino , Fertilización , Células Germinativas/metabolismo , Humanos , Masculino , Plasmodium falciparum/genética
2.
mBio ; 13(3): e0057822, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35638735

RESUMEN

Sexual reproduction of Plasmodium falciparum parasites is critical to the spread of malaria in the human population. The factors that regulate gene expression underlying formation of fertilization-competent gametes, however, remain unknown. Here, we report that P. falciparum expresses a protein with an AT-rich interaction domain (ARID) which, in other organisms, is part of chromatin remodeling complexes. P. falciparum ARID (PfARID) localized to the parasite nucleus and is critical for the formation of male gametes and fertility of female gametes. PfARID gene deletion (Pfarid-) gametocytes showed downregulation of gene expression important for gametogenesis, antigenic variation, and cell signaling and for parasite development in the mosquito. Our study identifies PfARID as a critical nuclear protein involved in regulating the gene expression landscape of mature gametocytes. This establishes fertility and also prepares the parasite for postfertilization events that are essential for infection of the mosquito vector. IMPORTANCE Successful completion of the Plasmodium life cycle requires formation of mature gametocytes and their uptake by the female Anopheles mosquito vector in an infected blood meal. Inside the mosquito midgut the parasite undergoes gametogenesis and sexual reproduction. In the present study, we demonstrate that PfARID is essential for male gametogenesis and female fertility and, thereby, transmission to the mosquito vector. PfARID possibly regulates the chromatin landscape of stage V gametocytes and targeting PfARID function may provide new avenues into designing interventions to prevent malaria transmission.


Asunto(s)
Anopheles , Malaria Falciparum , Malaria , Parásitos , Animales , Anopheles/parasitología , Femenino , Fertilidad , Gametogénesis/genética , Humanos , Malaria/parasitología , Malaria Falciparum/parasitología , Masculino , Mosquitos Vectores/parasitología , Plasmodium falciparum/fisiología
3.
Front Cell Infect Microbiol ; 12: 878496, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711667

RESUMEN

What genes determine in vitro growth and nutrient utilization in asexual blood-stage malaria parasites? Competition experiments between NF54, clone 3D7, a lab-adapted African parasite, and a recently isolated Asian parasite (NHP4026) reveal contrasting outcomes in different media: 3D7 outcompetes NHP4026 in media containing human serum, while NHP4026 outcompetes 3D7 in media containing AlbuMAX, a commercial lipid-rich bovine serum formulation. To determine the basis for this polymorphism, we conducted parasite genetic crosses using humanized mice and compared genome-wide allele frequency changes in three independent progeny populations cultured in media containing human serum or AlbuMAX. This bulk segregant analysis detected three quantitative trait loci (QTL) regions [on chromosome (chr) 2 containing aspartate transaminase AST; chr 13 containing EBA-140; and chr 14 containing cysteine protease ATG4] linked with differential growth in serum or AlbuMAX in each of the three independent progeny pools. Selection driving differential growth was strong (s = 0.10 - 0.23 per 48-hour lifecycle). We conducted validation experiments for the strongest QTL on chr 13: competition experiments between ΔEBA-140 and 3D7 wildtype parasites showed fitness reversals in the two medium types as seen in the parental parasites, validating this locus as the causative gene. These results (i) demonstrate the effectiveness of bulk segregant analysis for dissecting fitness traits in P. falciparum genetic crosses, and (ii) reveal intimate links between red blood cell invasion and nutrient composition of growth media. Use of parasite crosses combined with bulk segregant analysis will allow systematic dissection of key nutrient acquisition/metabolism and red blood cell invasion pathways in P. falciparum.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Animales , Cruzamientos Genéticos , Medios de Cultivo , Frecuencia de los Genes , Malaria Falciparum/parasitología , Ratones , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Sitios de Carácter Cuantitativo
4.
Commun Biol ; 4(1): 734, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34127785

RESUMEN

Genetic crosses are most powerful for linkage analysis when progeny numbers are high, parental alleles segregate evenly and numbers of inbred progeny are minimized. We previously developed a novel genetic crossing platform for the human malaria parasite Plasmodium falciparum, an obligately sexual, hermaphroditic protozoan, using mice carrying human hepatocytes (the human liver-chimeric FRG NOD huHep mouse) as the vertebrate host. We report on two genetic crosses-(1) an allopatric cross between a laboratory-adapted parasite (NF54) of African origin and a recently patient-derived Asian parasite, and (2) a sympatric cross between two recently patient-derived Asian parasites. We generated 144 unique recombinant clones from the two crosses, doubling the number of unique recombinant progeny generated in the previous 30 years. The allopatric African/Asian cross has minimal levels of inbreeding and extreme segregation distortion, while in the sympatric Asian cross, inbred progeny predominate and parental alleles segregate evenly. Using simulations, we demonstrate that these progeny provide the power to map small-effect mutations and epistatic interactions. The segregation distortion in the allopatric cross slightly erodes power to detect linkage in several genome regions. We greatly increase the power and the precision to map biomedically important traits with these new large progeny panels.


Asunto(s)
Mapeo Cromosómico/métodos , Cruzamientos Genéticos , Hepatocitos/parasitología , Plasmodium falciparum/genética , Animales , Estudios de Asociación Genética , Hepatocitos/trasplante , Humanos , Ratones , Quimera por Trasplante
5.
JCI Insight ; 5(13)2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32484795

RESUMEN

Whole-sporozoite vaccines engender sterilizing immunity against malaria in animal models and importantly, in humans. Gene editing allows for the removal of specific parasite genes, enabling generation of genetically attenuated parasite (GAP) strains for vaccination. Using rodent malaria parasites, we have previously shown that late liver stage-arresting replication-competent (LARC) GAPs confer superior protection when compared with early liver stage-arresting replication-deficient GAPs and radiation-attenuated sporozoites. However, generating a LARC GAP in the human malaria parasite Plasmodium falciparum (P. falciparum) has been challenging. Here, we report the generation and characterization of a likely unprecedented P. falciparum LARC GAP generated by targeted gene deletion of the Mei2 gene: P. falciparum mei2-. Robust exoerythrocytic schizogony with extensive cell growth and DNA replication was observed for P. falciparum mei2- liver stages in human liver-chimeric mice. However, P. falciparum mei2- liver stages failed to complete development and did not form infectious exoerythrocytic merozoites, thereby preventing their transition to asexual blood stage infection. Therefore, P. falciparum mei2- is a replication-competent, attenuated human malaria parasite strain with potentially increased potency, useful for vaccination to protect against P. falciparum malaria infection.


Asunto(s)
Vacunas contra la Malaria/farmacología , Malaria Falciparum/prevención & control , Malaria/prevención & control , Parásitos/efectos de los fármacos , Esporozoítos/patogenicidad , Animales , Humanos , Hígado/inmunología , Malaria/parasitología , Malaria Falciparum/tratamiento farmacológico , Parásitos/inmunología , Parásitos/patogenicidad , Plasmodium falciparum/genética , Plasmodium yoelii/inmunología , Vacunación/métodos , Vacunas Atenuadas/inmunología
6.
iScience ; 23(8): 101381, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32739836

RESUMEN

The human malaria parasite Plasmodium vivax remains vastly understudied, mainly due to the lack of suitable laboratory models. Here, we report a humanized mouse model to test interventions that block P. vivax parasite transition from liver stage infection to blood stage infection. Human liver-chimeric FRGN huHep mice infected with P. vivax sporozoites were infused with human reticulocytes, allowing transition of exo-erythrocytic merozoites to reticulocyte infection and development into all erythrocytic forms, including gametocytes, in vivo. In order to test the utility of this model for preclinical assessment of interventions, the invasion blocking potential of a monoclonal antibody targeting the essential interaction of the P. vivax Duffy Binding Protein with the Duffy antigen receptor was tested by passive immunization. This antibody inhibited invasion by over 95%, providing unprecedented in vivo evidence that PvDBP constitutes a promising blood stage vaccine candidate and proving our model highly suitable to test blood stage interventions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA