RESUMEN
Chromatin organization is highly dynamic and modulates DNA replication, transcription, and chromosome segregation. Condensin is essential for chromosome assembly during mitosis and meiosis, as well as maintenance of chromosome structure during interphase. While it is well established that sustained condensin expression is necessary to ensure chromosome stability, the mechanisms that control its expression are not yet known. Herein, we report that disruption of cyclin-dependent kinase 7 (CDK7), the core catalytic subunit of CDK-activating kinase, leads to reduced transcription of several condensin subunits, including structural maintenance of chromosomes 2 (SMC2). Live and static microscopy revealed that inhibiting CDK7 signaling prolongs mitosis and induces chromatin bridge formation, DNA double-strand breaks, and abnormal nuclear features, all of which are indicative of mitotic catastrophe and chromosome instability. Affirming the importance of condensin regulation by CDK7, genetic suppression of the expression of SMC2, a core subunit of this complex, phenocopies CDK7 inhibition. Moreover, analysis of genome-wide chromatin conformation using Hi-C revealed that sustained activity of CDK7 is necessary to maintain chromatin sublooping, a function that is ascribed to condensin. Notably, the regulation of condensin subunit gene expression is independent of superenhancers. Together, these studies reveal a new role for CDK7 in sustaining chromatin configuration by ensuring the expression of condensin genes, including SMC2.
Asunto(s)
Cromatina , Quinasas Ciclina-Dependientes , Transducción de Señal , Cromatina/genética , Cromatina/metabolismo , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Mitosis/genética , Inestabilidad Cromosómica/genética , Humanos , Línea Celular Tumoral , Regulación de la Expresión Génica/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Silenciador del GenRESUMEN
Cyclin-dependent kinase 7 (CDK7) is a master regulatory kinase that drives cell cycle progression and stimulates expression of oncogenes in a myriad of cancers. Inhibitors of CDK7 (CDK7i) are currently in clinical trials; however, as with many cancer therapies, patients will most likely experience recurrent disease due to acquired resistance. Identifying targets underlying CDK7i resistance will facilitate prospective development of new therapies that can circumvent such resistance. Here we utilized triple-negative breast cancer as a model to discern mechanisms of resistance as it has been previously shown to be highly responsive to CDK7 inhibitors. After generating cell lines with acquired resistance, high-throughput RNA sequencing revealed significant upregulation of genes associated with efflux pumps and transforming growth factor-beta (TGF-ß) signaling pathways. Genetic silencing or pharmacological inhibition of ABCG2, an efflux pump associated with multidrug resistance, resensitized resistant cells to CDK7i, indicating a reliance on these transporters. Expression of activin A (INHBA), a member of the TGF-ß family of ligands, was also induced, whereas its intrinsic inhibitor, follistatin (FST), was repressed. In resistant cells, increased phosphorylation of SMAD3, a downstream mediator, confirmed an increase in activin signaling, and phosphorylated SMAD3 directly bound the ABCG2 promoter regulatory region. Finally, pharmacological inhibition of TGF-ß/activin receptors or genetic silencing of SMAD4, a transcriptional partner of SMAD3, reversed the upregulation of ABCG2 in resistant cells and phenocopied ABCG2 inhibition. This study reveals that inhibiting the TGF-ß/Activin-ABCG2 pathway is a potential avenue for preventing or overcoming resistance to CDK7 inhibitors.
Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/biosíntesis , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Subunidades beta de Inhibinas/metabolismo , Proteínas de Neoplasias/biosíntesis , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Línea Celular Tumoral , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Subunidades beta de Inhibinas/genética , Proteínas de Neoplasias/genética , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Quinasa Activadora de Quinasas Ciclina-DependientesRESUMEN
The phenotypes of each breast cancer subtype are defined by their transcriptomes. However, the transcription factors that regulate differential patterns of gene expression that contribute to specific disease outcomes are not well understood. Here, using gene silencing and overexpression approaches, RNA-Seq, and splicing analysis, we report that the transcription factor B-cell leukemia/lymphoma 11A (BCL11A) is highly expressed in triple-negative breast cancer (TNBC) and drives metastatic disease. Moreover, BCL11A promotes cancer cell invasion by suppressing the expression of muscleblind-like splicing regulator 1 (MBNL1), a splicing regulator that suppresses metastasis. This ultimately increases the levels of an alternatively spliced isoform of integrin-α6 (ITGA6), which is associated with worse patient outcomes. These results suggest that BCL11A sustains TNBC cell invasion and metastatic growth by repressing MBNL1-directed splicing of ITGA6 Our findings also indicate that BCL11A lies at the interface of transcription and splicing and promotes aggressive TNBC phenotypes.
Asunto(s)
Regulación Neoplásica de la Expresión Génica , Invasividad Neoplásica/genética , Proteínas Represoras/genética , Neoplasias de la Mama Triple Negativas/genética , Regulación hacia Arriba , Línea Celular Tumoral , Progresión de la Enfermedad , Femenino , Humanos , Invasividad Neoplásica/patología , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Neoplasias de la Mama Triple Negativas/patologíaRESUMEN
Inhibitors of bromodomain and extra-terminal proteins (BETi) suppress oncogenic gene expression and have been shown to be efficacious in many in vitro and murine models of cancer, including triple-negative breast cancer (TNBC), a highly aggressive disease. However, in most cancer models, responses to BETi can be highly variable. We previously reported that TNBC cells either undergo senescence or apoptosis in response to BETi, but the specific mechanisms dictating these two cell fates remain unknown. Using six human TNBC cell lines, we show that the terminal response of TNBC cells to BETi is dictated by the intrinsic expression levels of the anti-apoptotic protein B-cell lymphoma-extra large (BCL-xL). BCL-xL levels were higher in cell lines that senesce in response to BETi compared with lines that primarily die in response to these drugs. Moreover, BCL-xL expression was further reduced in cells that undergo BETi-mediated apoptosis. Forced BCL-xL overexpression in cells that normally undergo apoptosis following BETi treatment shifted them to senescence without affecting the reported mechanism of action of BETi in TNBC, that is, mitotic catastrophe. Most importantly, pharmacological or genetic inhibition of BCL-xL induced apoptosis in response to BETi, and inhibiting BCL-xL, even after BETi-induced senescence had already occurred, still induced cell death. These results indicate that BCL-xL provides a senescent cell death-inducing or senolytic target that may be exploited to improve therapeutic outcomes of TNBC in response to BETi. They also suggest that the basal levels of BCL-xL should be predictive of tumor responses to BETi in current clinical trials.
Asunto(s)
Apoptosis , Senescencia Celular , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Proteína bcl-X/metabolismo , Proteínas de Ciclo Celular , Línea Celular Tumoral , Femenino , Humanos , Proteínas Nucleares/genética , Factores de Transcripción/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Proteína bcl-X/genéticaRESUMEN
BACKGROUND: Triple-negative breast cancer (TNBC) is characterized by high rates of recurrence and poor overall survival. This is due, in part, to a deficiency of targeted therapies, making it essential to identify therapeutically targetable driver pathways of this disease. While epidermal growth factor receptor (EGFR) is expressed in 60% of TNBCs and drives disease progression, attempts to inhibit EGFR in unselected TNBC patients have had a marginal impact on outcomes. Hence, we sought to identify the mechanisms that dictate EGFR expression and inhibitor response to provide a path for improving the utility of these drugs. In this regard, the majority of TNBCs express low levels of the transcription factor, Krüppel-like factor 4 (KLF4), while a small subset is associated with high expression. KLF4 and EGFR have also been reported to have opposing actions in TNBC. Thus, we tested whether KLF4 controls the expression of EGFR and cellular response to its pharmacological inhibition. METHODS: KLF4 was transiently overexpressed in MDA-MB-231 and MDA-MB-468 cells or silenced in MCF10A cells. Migration and invasion were assessed using modified Boyden chamber assays, and proliferation was measured by EdU incorporation. Candidate downstream targets of KLF4, including EGFR, were identified using reverse phase protein arrays of MDA-MB-231 cells following enforced KLF4 expression. The ability of KLF4 to suppress EGFR gene and protein expression and downstream signaling was assessed by RT-PCR and western blot, respectively. ChIP-PCR confirmed KLF4 binding to the EGFR promoter. Response to erlotinib in the context of KLF4 overexpression or silencing was assessed using cell number and dose-response curves. RESULTS: We report that KLF4 is a major determinant of EGFR expression and activity in TNBC cells. KLF4 represses transcription of the EGFR gene, leading to reduced levels of total EGFR, its activated/phosphorylated form (pEGFR), and its downstream signaling intermediates. Moreover, KLF4 suppression of EGFR is a necessary intermediary step for KLF4 to inhibit aggressive TNBC phenotypes. Most importantly, KLF4 dictates the sensitivity of TNBC cells to erlotinib, an FDA-approved inhibitor of EGFR. CONCLUSIONS: KLF4 is a major regulator of the efficacy of EGFR inhibitors in TNBC cells that may underlie the variable effectiveness of such drugs in patients.
Asunto(s)
Antineoplásicos/farmacología , Clorhidrato de Erlotinib/farmacología , Factores de Transcripción de Tipo Kruppel/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Apoptosis/efectos de los fármacos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Femenino , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Fosforilación , Transducción de Señal , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patologíaRESUMEN
DNA double strand breaks (DSBs) severely disrupt DNA integrity. 53BP1 plays critical roles in determining DSB repair. Whereas the recruitment of 53BP1 to the DSB site is key for its function, recent evidence suggests that 53BP1's abundance also plays an important role in DSB repair because recruitment to damage sites will be influenced by protein availability. Initial evidence has pointed to three proteins, the ubiquitin-conjugating enzyme UbcH7, the cysteine protease cathepsin L (CTSL), and the nuclear structure protein lamin A/C, that may impact 53BP1 levels, but the roles of each protein and any interplay between them were unclear. Here we report that UbcH7-dependent degradation plays a major role in controlling 53BP1 levels both under normal growth conditions and during DNA damage. CTSL influenced 53BP1 degradation during DNA damage while having little effect under normal growth conditions. Interestingly, both the protein and the mRNA levels of CTSL were reduced in UbcH7-depleted cells. Lamin A/C interacted with 53BP1 under normal conditions. DNA damage disrupted the lamin A/C-53BP1 interaction, which preceded the degradation of 53BP1 in soluble, but not chromatin-enriched, cellular fractions. Inhibition of 53BP1 degradation by a proteasome inhibitor or by UbcH7 depletion restored the 53BP1-lamin A/C interaction. Depletion of lamin A/C, but not CTSL, caused a similar enhancement in cell sensitivity to DNA damage as UbcH7 depletion. These data suggest that multiple pathways collectively fine-tune the cellular levels of 53BP1 protein to ensure proper DSB repair and cell survival.
Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Células A549 , Catepsina L/genética , Catepsina L/metabolismo , Células HeLa , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismoRESUMEN
Cancer-predisposing genes associated with inherited cancer syndromes help explain mechanisms of sporadic carcinogenesis and often inform normal development. Cowden syndrome (CS) is an autosomal-dominant disorder characterized by high lifetime risks of epithelial cancers, such that â¼50% of affected individuals are wild-type for known cancer-predisposing genes. Using whole-exome and Sanger sequencing of a multi-generation CS family affected by thyroid and other cancers, we identified a pathogenic missense heterozygous SEC23B variant (c.1781T>G [p.Val594Gly]) that segregates with the phenotype. We also found germline heterozygous SEC23B variants in 3/96 (3%) unrelated mutation-negative CS probands with thyroid cancer and in The Cancer Genome Atlas (TCGA), representing apparently sporadic cancers. We note that the TCGA thyroid cancer dataset is enriched with unique germline deleterious SEC23B variants associated with a significantly younger age of onset. SEC23B encodes Sec23 homolog B (S. cerevisiae), a component of coat protein complex II (COPII), which transports proteins from the endoplasmic reticulum (ER) to the Golgi apparatus. Interestingly, germline homozygous or compound-heterozygous SEC23B mutations cause an unrelated disorder, congenital dyserythropoietic anemia type II, and SEC23B-deficient mice suffer from secretory organ degeneration due to ER-stress-associated apoptosis. By characterizing the p.Val594Gly variant in a normal thyroid cell line, we show that it is a functional alteration that results in ER-stress-mediated cell-colony formation and survival, growth, and invasion, which reflect aspects of a cancer phenotype. Our findings suggest a different role for SEC23B, whereby germline heterozygous variants associate with cancer predisposition potentially mediated by ER stress "addiction."
Asunto(s)
Estrés del Retículo Endoplásmico , Mutación de Línea Germinal/genética , Síndrome de Hamartoma Múltiple/genética , Síndrome de Hamartoma Múltiple/patología , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Proteínas de Transporte Vesicular/genética , Adolescente , Adulto , Anciano , Animales , Apoptosis , Western Blotting , Adhesión Celular , Movimiento Celular , Proliferación Celular , Células Cultivadas , Exoma/genética , Femenino , Técnica del Anticuerpo Fluorescente , Estudios de Seguimiento , Genotipo , Síndrome de Hamartoma Múltiple/metabolismo , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Técnicas para Inmunoenzimas , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Linaje , Fenotipo , Pronóstico , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neoplasias de la Tiroides/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/fisiología , Adulto JovenRESUMEN
Breast cancer is a collection of distinct tumor subtypes that are driven by unique gene expression profiles. These transcriptomes are controlled by various epigenetic marks that dictate which genes are expressed and suppressed. During carcinogenesis, extensive restructuring of the epigenome occurs, including aberrant acetylation, alteration of methylation patterns, and accumulation of epigenetic readers at oncogenes. As epigenetic alterations are reversible, epigenome-modulating drugs could provide a mechanism to silence numerous oncogenes simultaneously. Here, we review the impact of inhibitors of the Bromodomain and Extraterminal (BET) family of epigenetic readers in breast cancer. These agents, including the prototypical BET inhibitor JQ1, have been shown to suppress a variety of oncogenic pathways while inducing minimal, if any, toxicity in models of several subtypes of breast cancer. BET inhibitors also synergize with multiple approved anti-cancer drugs, providing a greater response in breast cancer cell lines and mouse models than either single agent. The combined findings of the studies discussed here provide an excellent rationale for the continued investigation of the utility of BET inhibitors in breast cancer.
Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Proteínas/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Terapia Molecular Dirigida , Proteínas/química , Proteínas/metabolismoRESUMEN
BACKGROUND: Macroautophagy/autophagy is considered to play key roles in tumor cell evasion of therapy and establishment of metastases in breast cancer. High expression of LC3, a residual autophagy marker, in primary breast tumors has been associated with metastatic disease and poor outcome. FIP200/Atg17, a multi-functional pro-survival molecule required for autophagy, has been implicated in brain metastases in experimental models. However, expression of these proteins has not been examined in brain metastases from patients with breast cancer. METHODS: In this retrospective study, specimens from 44 patients with brain metastases of infiltrating ductal carcinoma of the breast (IDC), unpaired samples from 52 patients with primary IDC (primary-BC) and 16 matched-paired samples were analyzed for LC3 puncta, expression of FIP200/Atg17, and p62 staining. RESULTS: LC3-puncta+ tumor cells and FIP200/Atg17 expression were detected in greater than 90% of brain metastases but there were considerable intra- and inter-tumor differences in expression levels. High numbers of LC3-puncta+ tumor cells in brain metastases correlated with a significantly shorter survival time in triple-negative breast cancer. FIP200/Atg17 protein levels were significantly higher in metastases that subsequently recurred following therapy. The percentages of LC3 puncta+ tumor cells and FIP200/Atg17 protein expression levels, but not mRNA levels, were significantly higher in metastases than primary-BC. Meta-analysis of gene expression datasets revealed a significant correlation between higher FIP200(RB1CC1)/Atg17 mRNA levels in primary-BC tumors and shorter disease-free survival. CONCLUSIONS: These results support assessments of precision medicine-guided targeting of autophagy in treatment of brain metastases in breast cancer patients.
Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/patología , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Adulto , Anciano , Proteínas Relacionadas con la Autofagia , Biomarcadores de Tumor/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/terapia , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/terapia , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/mortalidad , Carcinoma Ductal de Mama/terapia , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Metaanálisis como Asunto , Persona de Mediana Edad , ARN Mensajero/metabolismo , Estudios RetrospectivosRESUMEN
Bromodomain and extraterminal (BET) proteins are epigenetic "readers" that recognize acetylated histones and mark areas of the genome for transcription. BRD4, a BET family member protein, has been implicated in a number of types of cancer, and BET protein inhibitors (BETi) are efficacious in many preclinical cancer models. However, the drivers of response to BETi vary depending on tumor type, and little is known regarding the target genes conveying BETi activity in triple-negative breast cancer (TNBC). Here, we show that BETi repress growth of multiple in vitro and in vivo models of TNBC by inducing two terminal responses: apoptosis and senescence. Unlike in other cancers, response to BETi in TNBC is not dependent upon suppression of MYC Instead, both end points are preceded by the appearance of polyploid cells caused by the suppression of Aurora kinases A and B (AURKA/B), which are critical mediators of mitosis. In addition, AURKA/B inhibitors phenocopy the effects of BETi. These results indicate that Aurora kinases play an important role in the growth suppressive activity of BETi in TNBC. Elucidating the mechanism of response to BETi in TNBC should 1) facilitate the prediction of how distinct TNBC tumors will respond to BETi and 2) inform the rational design of drug combination therapies.
Asunto(s)
Antineoplásicos/uso terapéutico , Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa B/antagonistas & inhibidores , Mama/efectos de los fármacos , Proteínas Nucleares/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/uso terapéutico , Factores de Transcripción/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Aurora Quinasa A/metabolismo , Aurora Quinasa B/metabolismo , Mama/metabolismo , Mama/patología , Proteínas de Ciclo Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas Nucleares/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Factores de Transcripción/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patologíaRESUMEN
BACKGROUND: Follistatin (FST) is an intrinsic inhibitor of activin, a member of the transforming growth factor-ß superfamily of ligands. The prognostic value of FST and its family members, the follistatin-like (FSTL) proteins, have been studied in various cancers. However, these studies, as well as limited functional analyses of the FSTL proteins, have yielded conflicting results on the role of these proteins in disease progression. Furthermore, very few have been focused on FST itself. We assessed whether FST may be a suppressor of tumorigenesis and/or metastatic progression in breast cancer. METHODS: Using publicly available gene expression data, we examined the expression patterns of FST and INHBA, a subunit of activin, in normal and cancerous breast tissue and the prognostic value of FST in breast cancer metastases, recurrence-free survival, and overall survival. The functional effects of activin and FST on in vitro proliferation, migration, and invasion of breast cancer cells were also examined. FST overexpression in an autochthonous mouse model of breast cancer was then used to assess the in vivo impact of FST on metastatic progression. RESULTS: Examination of multiple breast cancer datasets revealed that FST expression is reduced in breast cancers compared with normal tissue and that low FST expression predicts increased metastasis and reduced overall survival. FST expression was also reduced in a mouse model of HER2/Neu-induced metastatic breast cancer. We found that FST blocks activin-induced breast epithelial cell migration in vitro, suggesting that its loss may promote breast cancer aggressiveness. To directly determine if FST restoration could inhibit metastatic progression, we transgenically expressed FST in the HER2/Neu model. Although FST had no impact on tumor initiation or growth, it completely blocked the formation of lung metastases. CONCLUSIONS: These data indicate that FST is a bona fide metastasis suppressor in this mouse model and support future efforts to develop an FST mimetic to suppress metastatic progression.
Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Folistatina/genética , Receptor ErbB-2/genética , Proteínas Supresoras de Tumor/genética , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Supervivencia Celular/genética , Bases de Datos Genéticas , Femenino , Folistatina/metabolismo , Humanos , Estimación de Kaplan-Meier , Ratones , Ratones Transgénicos , Metástasis de la Neoplasia , Estadificación de Neoplasias , Pronóstico , Receptor ErbB-2/metabolismo , Proteínas Supresoras de Tumor/metabolismoRESUMEN
DNA double-strand break (DSB) repair is not only key to genome stability but is also an important anticancer target. Through an shRNA library-based screening, we identified ubiquitin-conjugating enzyme H7 (UbcH7, also known as Ube2L3), a ubiquitin E2 enzyme, as a critical player in DSB repair. UbcH7 regulates both the steady-state and replicative stress-induced ubiquitination and proteasome-dependent degradation of the tumor suppressor p53-binding protein 1 (53BP1). Phosphorylation of 53BP1 at the N terminus is involved in the replicative stress-induced 53BP1 degradation. Depletion of UbcH7 stabilizes 53BP1, leading to inhibition of DSB end resection. Therefore, UbcH7-depleted cells display increased nonhomologous end-joining and reduced homologous recombination for DSB repair. Accordingly, UbcH7-depleted cells are sensitive to DNA damage likely because they mainly used the error-prone nonhomologous end-joining pathway to repair DSBs. Our studies reveal a novel layer of regulation of the DSB repair choice and propose an innovative approach to enhance the effect of radiotherapy or chemotherapy through stabilizing 53BP1.
Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Regulación Neoplásica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Camptotecina/química , Línea Celular Tumoral , Supervivencia Celular , Daño del ADN , Células HEK293 , Humanos , Fosforilación , Pronóstico , Complejo de la Endopetidasa Proteasomal/química , ARN Interferente Pequeño/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53 , Ubiquitina/químicaRESUMEN
Breast cancer is a heterogeneous disease comprised of distinct subtypes predictive of patient outcome. Tumors of the basal-like subtype have a poor prognosis due to inherent aggressiveness and the lack of targeted therapeutics. Basal-like tumors typically lack estrogen receptor-α, progesterone receptor and HER2/ERBB2, or in other words they are triple negative (TN). Continued evaluation of basal-like breast cancer (BLBC) biology is essential to identify novel therapeutic targets. Expression of the pi subunit of the GABA(A) receptor (GABRP) is associated with the BLBC/TN subtype, and herein, we reveal its expression also correlates with metastases to the brain and poorer patient outcome. GABRP expression in breast cancer cell lines also demonstrates a significant correlation with the basal-like subtype suggesting that GABRP functions in the initiation and/or progression of basal-like tumors. To address this postulate, we stably silenced GABRP in two BLBC cell lines, HCC1187 and HCC70 cells. Decreased GABRP reduces in vitro tumorigenic potential and migration concurrent with alterations in the cytoskeleton, specifically diminished cellular protrusions and expression of the BLBC-associated cytokeratins, KRT5, KRT6B, KRT14, and KRT17. Silencing GABRP also decreases phosphorylation of extracellular regulated kinase 1/2 (ERK1/2) in both cell lines and selective inhibition of ERK1/2 similarly decreases the basal-like cytokeratins as well as migration. Combined, these data reveal a GABRP-ERK1/2-cytokeratin axis that maintains the migratory phenotype of basal-like breast cancer. GABRP is a component of a cell surface receptor, thus, these findings suggest that targeting this new signaling axis may have therapeutic potential in BLBC.
Asunto(s)
Neoplasias de la Mama/patología , Sistema de Señalización de MAP Quinasas , Receptores de GABA-A/fisiología , Neoplasias de la Mama/enzimología , Línea Celular , Activación Enzimática , Perfilación de la Expresión Génica , Silenciador del Gen , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de GABA-A/genética , Análisis de SupervivenciaRESUMEN
Identification of novel targets for the treatment of basal-like breast cancer is essential for improved outcomes in patients with this disease. This study investigates the association of MMP7 expression and MMP7 promoter methylation with subtype and outcome in breast cancer patient cohorts. Immunohistochemical analysis was performed on a breast cancer tissue microarray and validated in independent histological samples. MMP7 expression significantly correlated with patient age, tumor size, triple-negative (TN) status, and recurrence. Analysis of publically available datasets confirmed MMP7 gene expression as a prognostic marker of breast cancer metastasis, particularly metastasis to the brain and lungs. Methylation of the MMP7 promoter was assessed by methylation-specific PCR in a panel of breast cancer cell lines and patient tumor samples. Hypomethylation of the MMP7 promoter significantly correlated with TN status in DNA from patient tumor samples, and this association was confirmed using The Cancer Genome Atlas (TCGA) dataset. Evaluation of a panel of breast cancer cell lines and data from the Curtis and TCGA breast carcinoma datasets revealed that elevated MMP7 expression and MMP7 promoter hypomethylation are specific biomarkers of the basal-like molecular subtype which shares considerable, but not complete, overlap with the clinical TN subtype. Importantly, MMP7 expression was identified as an independent predictor of pathological complete response in a large breast cancer patient cohort. Combined, these data suggest that MMP7 expression and MMP7 promoter methylation may be useful as prognostic biomarkers. Furthermore, MMP7 expression and promoter methylation analysis may be effective mechanisms to distinguish basal-like breast cancers from other triple-negative subtypes. Finally, these data implicate MMP7 as a potential therapeutic target for the treatment of basal-like breast cancers.
Asunto(s)
Neoplasias de la Mama/genética , Metilación de ADN , Metaloproteinasa 7 de la Matriz/genética , Neoplasias Basocelulares/genética , Regiones Promotoras Genéticas , Neoplasias de la Mama Triple Negativas/genética , Adulto , Anciano , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/mortalidad , Línea Celular Tumoral , Islas de CpG , Conjuntos de Datos como Asunto , Femenino , Estudios de Seguimiento , Expresión Génica , Humanos , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Neoplasias Basocelulares/diagnóstico , Neoplasias Basocelulares/mortalidad , Neoplasias de la Mama Triple Negativas/diagnóstico , Neoplasias de la Mama Triple Negativas/mortalidad , Carga TumoralRESUMEN
PURPOSE: To evaluate the ability of radiofrequency (RF)-triggered drug release from a multicomponent chain-shaped nanoparticle to inhibit the growth of an aggressive breast tumor. METHODS: A two-step solid phase chemistry was employed to synthesize doxorubicin-loaded nanochains, which were composed of three iron oxide nanospheres and one doxorubicin-loaded liposome assembled in a 100-nm-long linear nanochain. The nanochains were tested in the 4T1-LUC-GFP orthotopic mouse model, which is a highly aggressive breast cancer model. The 4T1-LUC-GFP cell line stably expresses firefly luciferase, which allowed the non-invasive in vivo imaging of tumor response to the treatment using bioluminescence imaging (BLI). RESULTS: Longitudinal BLI imaging showed that a single nanochain treatment followed by application of RF resulted in an at least 100-fold lower BLI signal compared to the groups treated with nanochains (without RF) or free doxorubicin followed by RF. A statistically significant increase in survival time of the nanochain-treated animals followed by RF (64.3 days) was observed when compared to the nanochain-treated group without RF (35.7 days), free doxorubicin-treated group followed by RF (38.5 days), and the untreated group (30.5 days; n=5 animals per group). CONCLUSIONS: These studies showed that the combination of RF and nanochains has the potential to effectively treat highly aggressive cancers and prolong survival.
Asunto(s)
Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Nanopartículas/administración & dosificación , Adyuvantes Farmacéuticos , Animales , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/uso terapéutico , Neoplasias de la Mama/patología , Doxorrubicina/administración & dosificación , Doxorrubicina/análogos & derivados , Doxorrubicina/uso terapéutico , Femenino , Humanos , Luminiscencia , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química , Polietilenglicoles/administración & dosificación , Polietilenglicoles/uso terapéutico , Ondas de Radio , Análisis de Supervivencia , Carga TumoralRESUMEN
Despite functional significance of nonmuscle myosin II in cell migration and invasion, its role in epithelial-mesenchymal transition (EMT) or TGF-ß signaling is unknown. Analysis of normal mammary gland expression revealed that myosin IIC is expressed in luminal cells, whereas myosin IIB expression is up-regulated in myoepithelial cells that have more mesenchymal characteristics. Furthermore, TGF-ß induction of EMT in nontransformed murine mammary gland epithelial cells results in an isoform switch from myosin IIC to myosin IIB and increased phosphorylation of myosin heavy chain (MHC) IIA on target sites known to regulate filament dynamics (S1916, S1943). These expression and phosphorylation changes are downstream of heterogeneous nuclear ribonucleoprotein-E1 (E1), an effector of TGF-ß signaling. E1 knockdown drives cells into a migratory, invasive mesenchymal state and concomitantly up-regulates MHC IIB expression and MHC IIA phosphorylation. Abrogation of myosin IIB expression in the E1 knockdown cells has no effect on 2D migration but significantly reduced transmigration and macrophage-stimulated collagen invasion. These studies indicate that transition between myosin IIC/myosin IIB expression is a critical feature of EMT that contributes to increases in invasive behavior.
Asunto(s)
Transición Epitelial-Mesenquimal , Miosina Tipo II/metabolismo , Isoformas de Proteínas/metabolismo , Factor de Crecimiento Transformador beta/fisiología , Animales , Línea Celular , Ratones , FosforilaciónRESUMEN
Breast cancer is the most common cancer in females, affecting one in every eight women and accounting for the majority of cancer-related deaths in women worldwide. Germline mutations in the BRCA1 and BRCA2 genes are significant risk factors for specific subtypes of breast cancer. BRCA1 mutations are associated with basal-like breast cancers, whereas BRCA2 mutations are associated with luminal-like disease. Defects in mammary epithelial cell differentiation have been previously recognized in germline BRCA1/2 mutation carriers even before cancer incidence. However, the underlying mechanism is largely unknown. Here, we employ spatial transcriptomics to investigate defects in mammary epithelial cell differentiation accompanied by distinct microenvironmental alterations in preneoplastic breast tissues from BRCA1/2 mutation carriers and normal breast tissues from noncarrier controls. We uncovered spatially defined receptor-ligand interactions in these tissues for the investigation of autocrine and paracrine signaling. We discovered that ß1-integrin-mediated autocrine signaling in BRCA2-deficient mammary epithelial cells may differ from BRCA1-deficient mammary epithelial cells. In addition, we found that the epithelial-to-stromal paracrine signaling in the breast tissues of BRCA1/2 mutation carriers is greater than in control tissues. More integrin-ligand pairs were differentially correlated in BRCA1/2-mutant breast tissues than noncarrier breast tissues with more integrin receptor-expressing stromal cells. IMPLICATIONS: These results suggest alterations in the communication between mammary epithelial cells and the microenvironment in BRCA1 and BRCA2 mutation carriers, laying the foundation for designing innovative breast cancer chemo-prevention strategies for high-risk patients.
Asunto(s)
Proteína BRCA1 , Neoplasias de la Mama , Humanos , Femenino , Proteína BRCA1/genética , Proteína BRCA2/genética , Ligandos , Mutación , Genes BRCA1 , Neoplasias de la Mama/genética , Neoplasias de la Mama/prevención & control , Mutación de Línea Germinal , Perfilación de la Expresión Génica , Integrinas , Predisposición Genética a la Enfermedad , Microambiente Tumoral/genéticaRESUMEN
Clinical trials examining broad-spectrum Src family kinase (SFK) inhibitors revealed significant dose-limiting toxicities, preventing advancement for solid tumors. SFKs are functionally heterogeneous, thus targeting individual members is a potential strategy to elicit anti-tumor efficacy while avoiding toxicity. Here, we identified that YES1 is the most highly overexpressed SFK in triple negative breast cancer (TNBC) and is associated with poor patient outcomes. Disrupting YES1, genetically or pharmacologically, induced aberrant mitosis, centrosome amplification, multi-polar spindles, and chromosomal instability (CIN). Mechanistically, YES1 sustained FOXM1 protein levels and elevated expression of FOXM1 target genes that control centrosome function and are essential for effective and accurate mitotic progression. In both in vitro and in vivo TNBC models, YES1 suppression potentiated the efficacy of taxanes, cornerstone drugs for TNBC that require elevated CIN for efficacy. Clinically, elevated expression of YES1 was associated with worse overall survival of TNBC patients treated with taxane and anthracycline combination regimens. Together, this study demonstrates that YES1 is an essential regulator of genome stability in TNBC that can be leveraged to improve taxane efficacy.
RESUMEN
The alternative splicing of PML precursor mRNA gives rise to various PML isoforms, yet their expression profile in breast cancer cells remains uncharted. We discovered that PML1 is the most abundant isoform in all breast cancer subtypes, and its expression is associated with unfavorable prognosis in estrogen receptor-positive (ER+) breast cancers. PML depletion reduces cell proliferation, invasion, and stemness, while heterologous PML1 expression augments these processes and fuels tumor growth and resistance to fulvestrant, an FDA-approved drug for ER+ breast cancer, in a mouse model. Moreover, PML1, rather than the well-known tumor suppressor isoform PML4, rescues the proliferation of PML knockdown cells. ChIP-seq analysis reveals significant overlap between PML-, ER-, and Myc-bound promoters, suggesting their coordinated regulation of target gene expression, including genes involved in breast cancer stem cells (BCSCs), such as JAG1, KLF4, YAP1, SNAI1, and MYC. Loss of PML reduces BCSC-related gene expression, and exogenous PML1 expression elevates their expression. Consistently, PML1 restores the association of PML with these promoters in PML-depleted cells. We identified a novel association between PML1 and WDR5, a key component of H3K4 methyltransferase (HMTs) complexes that catalyze H3K4me1 and H3K4me3. ChIP-seq analyses showed that the loss of PML1 reduces H3K4me3 in numerous loci, including BCSC-associated gene promoters. Additionally, PML1, not PML4, re-establishes the H3K4me3 mark on these promoters in PML-depleted cells. Significantly, PML1 is essential for recruiting WDR5, MLL1, and MLL2 to these gene promoters. Inactivating WDR5 by knockdown or inhibitors phenocopies the effects of PML1 loss, reducing BCSC-related gene expression and tumorsphere formation and enhancing fulvestrant's anticancer activity. Our findings challenge the conventional understanding of PML as a tumor suppressor, redefine its role as a promoter of tumor growth in breast cancer, and offer new insights into the unique roles of PML isoforms in breast cancer.