Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Mol Cell ; 84(4): 791-801.e6, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38262410

RESUMEN

In S phase, duplicating and assembling the whole genome into chromatin requires upregulation of replicative histone gene expression. Here, we explored how histone chaperones control histone production in human cells to ensure a proper link with chromatin assembly. Depletion of the ASF1 chaperone specifically decreases the pool of replicative histones both at the protein and RNA levels. The decrease in their overall expression, revealed by total RNA sequencing (RNA-seq), contrasted with the increase in nascent/newly synthesized RNAs observed by 4sU-labeled RNA-seq. Further inspection of replicative histone RNAs showed a 3' end processing defect with an increase of pre-mRNAs/unprocessed transcripts likely targeted to degradation. Collectively, these data argue for a production defect of replicative histone RNAs in ASF1-depleted cells. We discuss how this regulation of replicative histone RNA metabolism by ASF1 as a "chaperone checkpoint" fine-tunes the histone dosage to avoid unbalanced situations deleterious for cell survival.


Asunto(s)
Histonas , Proteínas de Saccharomyces cerevisiae , Humanos , Histonas/genética , Histonas/metabolismo , Chaperonas de Histonas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , ARN/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Genes Dev ; 32(3-4): 224-229, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29483155

RESUMEN

DNA replication origins in hyperacetylated euchromatin fire preferentially during early S phase. However, how acetylation controls DNA replication timing is unknown. TICRR/TRESLIN is an essential protein required for the initiation of DNA replication. Here, we report that TICRR physically interacts with the acetyl-histone binding bromodomain (BRD) and extraterminal (BET) proteins BRD2 and BRD4. Abrogation of this interaction impairs TICRR binding to acetylated chromatin and disrupts normal S-phase progression. Our data reveal a novel function for BET proteins and establish the TICRR-BET interaction as a potential mechanism for epigenetic control of DNA replication.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Epigénesis Genética , Proteínas de Ciclo Celular/química , Línea Celular , Cromatina/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Fase S , Factores de Transcripción/metabolismo
3.
Nat Cell Biol ; 26(4): 604-612, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38589534

RESUMEN

The localization of transcriptional activity in specialized transcription bodies is a hallmark of gene expression in eukaryotic cells. It remains unclear, however, if and how transcription bodies affect gene expression. Here we disrupted the formation of two prominent endogenous transcription bodies that mark the onset of zygotic transcription in zebrafish embryos and analysed the effect on gene expression using enriched SLAM-seq and live-cell imaging. We find that the disruption of transcription bodies results in the misregulation of hundreds of genes. Here we focus on genes that are upregulated. These genes have accessible chromatin and are poised to be transcribed in the presence of the two transcription bodies, but they do not go into elongation. Live-cell imaging shows that disruption of the two large transcription bodies enables these poised genes to be transcribed in ectopic transcription bodies, suggesting that the large transcription bodies sequester a pause release factor. Supporting this hypothesis, we find that CDK9-the kinase that releases paused polymerase II-is highly enriched in the two large transcription bodies. Overexpression of CDK9 in wild-type embryos results in the formation of ectopic transcription bodies and thus phenocopies the removal of the two large transcription bodies. Taken together, our results show that transcription bodies regulate transcription by sequestering machinery, thereby preventing genes elsewhere in the nucleus from being transcribed.


Asunto(s)
Factor B de Elongación Transcripcional Positiva , ARN Polimerasa II , Animales , Cromatina/genética , Expresión Génica , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , ARN Polimerasa II/genética , Transcripción Genética , Pez Cebra/genética , Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA