Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Cell ; 78(6): 1237-1251.e7, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32442397

RESUMEN

DNA replication stress can stall replication forks, leading to genome instability. DNA damage tolerance pathways assist fork progression, promoting replication fork reversal, translesion DNA synthesis (TLS), and repriming. In the absence of the fork remodeler HLTF, forks fail to slow following replication stress, but underlying mechanisms and cellular consequences remain elusive. Here, we demonstrate that HLTF-deficient cells fail to undergo fork reversal in vivo and rely on the primase-polymerase PRIMPOL for repriming, unrestrained replication, and S phase progression upon limiting nucleotide levels. By contrast, in an HLTF-HIRAN mutant, unrestrained replication relies on the TLS protein REV1. Importantly, HLTF-deficient cells also exhibit reduced double-strand break (DSB) formation and increased survival upon replication stress. Our findings suggest that HLTF promotes fork remodeling, preventing other mechanisms of replication stress tolerance in cancer cells. This remarkable plasticity of the replication fork may determine the outcome of replication stress in terms of genome integrity, tumorigenesis, and response to chemotherapy.


Asunto(s)
Replicación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , ADN/biosíntesis , Factores de Transcripción/metabolismo , Línea Celular Tumoral , ADN/genética , Daño del ADN/genética , ADN Primasa/metabolismo , ADN Primasa/fisiología , Reparación del ADN/genética , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/fisiología , Células HEK293 , Humanos , Células K562 , Enzimas Multifuncionales/metabolismo , Enzimas Multifuncionales/fisiología , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/fisiología , Factores de Transcripción/genética
2.
Nucleic Acids Res ; 42(6): 3692-706, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24423875

RESUMEN

Proliferating cell nuclear antigen (PCNA) is a well-known scaffold for many DNA replication and repair proteins, but how the switch between partners is regulated is currently unclear. Interaction with PCNA occurs via a domain known as a PCNA-Interacting Protein motif (PIP box). More recently, an additional specialized PIP box has been described, the « PIP degron ¼, that targets PCNA-interacting proteins for proteasomal degradation via the E3 ubiquitin ligase CRL4(Cdt2). Here we provide evidence that CRL4(Cdt2)-dependent degradation of PIP degron proteins plays a role in the switch of PCNA partners during the DNA damage response by facilitating accumulation of translesion synthesis DNA polymerases into nuclear foci. We show that expression of a nondegradable PIP degron (Cdt1) impairs both Pol η and Pol κ focus formation on ultraviolet irradiation and reduces cell viability, while canonical PIP box-containing proteins have no effect. Furthermore, we identify PIP degron-containing peptides from several substrates of CRL4(Cdt2) as efficient inhibitors of Pol η foci formation. By site-directed mutagenesis we show that inhibition depends on a conserved threonine residue that confers high affinity for PCNA-binding. Altogether these findings reveal an important regulative role for the CRL4(Cdt2) pathway in the switch of PCNA partners on DNA damage.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Muerte Celular , Línea Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/química , N-Metiltransferasa de Histona-Lisina/química , Humanos , Ratones , Células 3T3 NIH , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Rayos Ultravioleta
3.
Front Cell Dev Biol ; 10: 826461, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35602594

RESUMEN

Despite advancements in understanding cancer pathogenesis and the development of many effective therapeutic agents, resistance to drug treatment remains a widespread challenge that substantially limits curative outcomes. The historical focus on genetic evolution under drug "pressure" as a key driver of resistance has uncovered numerous mechanisms of therapeutic value, especially with respect to acquired resistance. However, recent discoveries have also revealed a potential role for an ancient evolutionary balance between endogenous "viral" elements in the human genome and diverse factors involved in their restriction in tumor evolution and drug resistance. It has long been appreciated that the stability of genomic repeats such as telomeres and centromeres affect tumor fitness, but recent findings suggest that de-regulation of other repetitive genome elements, including retrotransposons, might also be exploited as cancer therapy. This review aims to present an overview of these recent findings.

4.
Genes (Basel) ; 10(5)2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-31137726

RESUMEN

During the very early stages of embryonic development chromosome replication occurs under rather challenging conditions, including a very short cell cycle, absence of transcription, a relaxed DNA damage response and, in certain animal species, a highly contracted S-phase. This raises the puzzling question of how the genome can be faithfully replicated in such a peculiar metabolic context. Recent studies have provided new insights into this issue, and unveiled that embryos are prone to accumulate genetic and genomic alterations, most likely due to restricted cellular functions, in particular reduced DNA synthesis quality control. These findings may explain the low rate of successful development in mammals and the occurrence of diseases, such as abnormal developmental features and cancer. In this review, we will discuss recent findings in this field and put forward perspectives to further study this fascinating question.


Asunto(s)
Replicación del ADN/genética , ADN/biosíntesis , Desarrollo Embrionario/genética , Inestabilidad Genómica/genética , Animales , Ciclo Celular/genética , ADN/genética , Daño del ADN/genética , Genoma/genética , Humanos , Fase S/genética
5.
Genes (Basel) ; 8(1)2017 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-28106858

RESUMEN

Early embryonic cleavages are characterized by short and highly synchronous cell cycles made of alternating S- and M-phases with virtually absent gap phases. In this contracted cell cycle, the duration of DNA synthesis can be extraordinarily short. Depending on the organism, the whole genome of an embryo is replicated at a speed that is between 20 to 60 times faster than that of a somatic cell. Because transcription in the early embryo is repressed, DNA synthesis relies on a large stockpile of maternally supplied proteins stored in the egg representing most, if not all, cellular genes. In addition, in early embryonic cell cycles, both replication and DNA damage checkpoints are inefficient. In this article, we will review current knowledge on how DNA synthesis is regulated in early embryos and discuss possible consequences of replicating chromosomes with little or no quality control.

6.
Dev Cell ; 34(3): 364-72, 2015 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-26212134

RESUMEN

In early embryos, the DNA damage checkpoint is silent until the midblastula transition (MBT) because of maternal limiting factors of unknown identity. Here we identify the RAD18 ubiquitin ligase as one such factor in Xenopus. We show, in vitro and in vivo, that inactivation of RAD18 function leads to DNA damage-dependent checkpoint activation, monitored by CHK1 phosphorylation. Moreover, we show that the abundance of both RAD18 and PCNA monoubiquitylated (mUb) are developmentally regulated. Increased DNA abundance limits the availability of RAD18 close to the MBT, thereby reducing PCNA(mUb) and inducing checkpoint derepression. Furthermore, we show that this embryonic-like regulation can be reactivated in somatic mammalian cells by ectopic RAD18 expression, therefore conferring resistance to DNA damage. Finally, we find high RAD18 expression in cancer stem cells highly resistant to DNA damage. Together, these data propose RAD18 as a critical embryonic checkpoint-inhibiting factor and suggest that RAD18 deregulation may have unexpected oncogenic potential.


Asunto(s)
Daño del ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Animales , Proteínas de Ciclo Celular , Células Cultivadas , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Embrión no Mamífero , Datos de Secuencia Molecular , Células Madre Neoplásicas/metabolismo , Óvulo/citología , Fosforilación , Proteínas Quinasas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteínas de Xenopus/biosíntesis , Proteínas de Xenopus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA