Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 68(1): 3-4, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28985509

RESUMEN

In this issue of Molecular Cell, Hubstenberger et al. (2017) define the molecular composition of P-bodies isolated from human epithelial cells to propose that these foci act as mRNA storage depots rather than mRNA decay facilities.


Asunto(s)
Estabilidad del ARN , ARN Mensajero/genética , Humanos
2.
Nucleic Acids Res ; 51(11): 5755-5773, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37070186

RESUMEN

In response to oxidative stress cells reprogram gene expression to enhance levels of antioxidant enzymes and promote survival. In Saccharomyces cerevisiae the polysome-interacting La-related proteins (LARPs) Slf1 and Sro9 aid adaptation of protein synthesis during stress by undetermined means. To gain insight in their mechanisms of action in stress responses, we determined LARP mRNA binding positions in stressed and unstressed cells. Both proteins bind within coding regions of stress-regulated antioxidant enzyme and other highly translated mRNAs in both optimal and stressed conditions. LARP interaction sites are framed and enriched with ribosome footprints suggesting ribosome-LARP-mRNA complexes are identified. Although stress-induced translation of antioxidant enzyme mRNAs is attenuated in slf1Δ, these mRNAs remain on polysomes. Focusing further on Slf1, we find it binds to both monosomes and disomes following RNase treatment. slf1Δ reduces disome enrichment during stress and alters programmed ribosome frameshifting rates. We propose that Slf1 is a ribosome-associated translational modulator that stabilises stalled/collided ribosomes, prevents ribosome frameshifting and so promotes translation of a set of highly-translated mRNAs that together facilitate cell survival and adaptation to stress.


Asunto(s)
Antioxidantes , Biosíntesis de Proteínas , Saccharomyces cerevisiae , Antioxidantes/metabolismo , Estrés Oxidativo/genética , Ribosomas/genética , Ribosomas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
3.
Nucleic Acids Res ; 51(16): 8820-8835, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37449412

RESUMEN

Translation initiation factor 4G (eIF4G) is an integral component of the eIF4F complex which is key to translation initiation for most eukaryotic mRNAs. Many eIF4G isoforms have been described in diverse eukaryotic organisms but we currently have a poor understanding of their functional roles and whether they regulate translation in an mRNA specific manner. The yeast Saccharomyces cerevisiae expresses two eIF4G isoforms, eIF4G1 and eIF4G2, that have previously been considered as functionally redundant with any phenotypic differences arising due to alteration in eIF4G expression levels. Using homogenic strains that express eIF4G1 or eIF4G2 as the sole eIF4G isoforms at comparable expression levels to total eIF4G, we show that eIF4G1 is specifically required to mediate the translational response to oxidative stress. eIF4G1 binds the mRNA cap and remains associated with actively translating ribosomes during oxidative stress conditions and we use quantitative proteomics to show that eIF4G1 promotes oxidative stress-specific proteome changes. eIF4G1, but not eIF4G2, binds the Slf1 LARP protein which appears to mediate the eIF4G1-dependent translational response to oxidative stress. We show similar isoform specific roles for eIF4G in human cells suggesting convergent evolution of multiple eIF4G isoforms offers significant advantages especially where translation must continue under stress conditions.


Asunto(s)
Factor 4G Eucariótico de Iniciación , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Biosíntesis de Proteínas , Proteínas Portadoras/genética , Isoformas de Proteínas/metabolismo , Estrés Oxidativo/genética
4.
Genes Dev ; 31(1): 18-33, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28096186

RESUMEN

The intratumor microenvironment generates phenotypically distinct but interconvertible malignant cell subpopulations that fuel metastatic spread and therapeutic resistance. Whether different microenvironmental cues impose invasive or therapy-resistant phenotypes via a common mechanism is unknown. In melanoma, low expression of the lineage survival oncogene microphthalmia-associated transcription factor (MITF) correlates with invasion, senescence, and drug resistance. However, how MITF is suppressed in vivo and how MITF-low cells in tumors escape senescence are poorly understood. Here we show that microenvironmental cues, including inflammation-mediated resistance to adoptive T-cell immunotherapy, transcriptionally repress MITF via ATF4 in response to inhibition of translation initiation factor eIF2B. ATF4, a key transcription mediator of the integrated stress response, also activates AXL and suppresses senescence to impose the MITF-low/AXL-high drug-resistant phenotype observed in human tumors. However, unexpectedly, without translation reprogramming an ATF4-high/MITF-low state is insufficient to drive invasion. Importantly, translation reprogramming dramatically enhances tumorigenesis and is linked to a previously unexplained gene expression program associated with anti-PD-1 immunotherapy resistance. Since we show that inhibition of eIF2B also drives neural crest migration and yeast invasiveness, our results suggest that translation reprogramming, an evolutionarily conserved starvation response, has been hijacked by microenvironmental stress signals in melanoma to drive phenotypic plasticity and invasion and determine therapeutic outcome.


Asunto(s)
Plasticidad de la Célula/genética , Reprogramación Celular/genética , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/genética , Melanoma/genética , Factor de Transcripción Asociado a Microftalmía/genética , Biosíntesis de Proteínas/genética , Animales , Microambiente Celular , Evolución Molecular , Retroalimentación Fisiológica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glutamina/farmacología , Humanos , Inmunoterapia , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Invasividad Neoplásica/genética , Cresta Neural/citología , Fenotipo , Factores de Transcripción/metabolismo , Pez Cebra/embriología
5.
J Biol Chem ; 299(10): 105195, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37633333

RESUMEN

The regulation of translation provides a rapid and direct mechanism to modulate the cellular proteome. In eukaryotes, an established model for the recruitment of ribosomes to mRNA depends upon a set of conserved translation initiation factors. Nevertheless, how cells orchestrate and define the selection of individual mRNAs for translation, as opposed to other potential cytosolic fates, is poorly understood. We have previously found significant variation in the interaction between individual mRNAs and an array of translation initiation factors. Indeed, mRNAs can be separated into different classes based upon these interactions to provide a framework for understanding different modes of translation initiation. Here, we extend this approach to include new mRNA interaction profiles for additional proteins involved in shaping the cytoplasmic fate of mRNAs. This work defines a set of seven mRNA clusters, based on their interaction profiles with 12 factors involved in translation and/or RNA binding. The mRNA clusters share both physical and functional characteristics to provide a rationale for the interaction profiles. Moreover, a comparison with mRNA interaction profiles from a host of RNA binding proteins suggests that there are defined patterns in the interactions of functionally related mRNAs. Therefore, this work defines global cytoplasmic mRNA binding modules that likely coordinate the synthesis of functionally related proteins.

6.
Mol Genet Metab ; 142(1): 108349, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38458124

RESUMEN

Metachromatic leukodystrophy (MLD) is a devastating rare neurodegenerative disease. Typically, loss of motor and cognitive skills precedes early death. The disease is characterised by deficient lysosomal arylsulphatase A (ARSA) activity and an accumulation of undegraded sulphatide due to pathogenic variants in the ARSA gene. Atidarsagene autotemcel (arsa-cel), an ex vivo haematopoietic stem cell gene therapy was approved for use in the UK in 2021 to treat early-onset forms of pre- or early-symptomatic MLD. Optimal outcomes require early diagnosis, but in the absence of family history this is difficult to achieve without newborn screening (NBS). A pre-pilot MLD NBS study was conducted as a feasibility study in Manchester UK using a two-tiered screening test algorithm. Pre-established cutoff values (COV) for the first-tier C16:0 sulphatide (C16:0-S) and the second-tier ARSA tests were evaluated. Before the pre-pilot study, initial test validation using non­neonatal diagnostic bloodspots demonstrated ARSA pseudodeficiency status was associated with normal C16:0-S results for age (n = 43) and hence not expected to cause false positive results in this first-tier test. Instability of ARSA in bloodspot required transfer of NBS bloodspots from ambient temperature to -20°C storage within 7-8 days after heel prick, the earliest possible in this UK pre-pilot study. Eleven of 3687 de-identified NBS samples in the pre-pilot were positive for C16:0-S based on the pre-established COV of ≥170 nmol/l or ≥ 1.8 multiples of median (MoM). All 11 samples were subsequently tested negative determined by the ARSA COV of <20% mean of negative controls. However, two of 20 NBS samples from MLD patients would be missed by this C16:0-S COV. A further suspected false negative case that displayed 4% mean ARSA activity by single ARSA analysis for the initial test validation was confirmed by genotyping of this NBS bloodspot, a severe late infantile MLD phenotype was predicted. This led to urgent assessment of this child by authority approval and timely commencement of arsa-cel gene therapy at 11 months old. Secondary C16:0-S analysis of this NBS bloodspot was 150 nmol/l or 1.67 MoM. This was the lowest result reported thus far, a new COV of 1.65 MoM is recommended for future pilot studies. Furthermore, preliminary data of this study showed C16:1-OH sulphatide is more specific for MLD than C16:0-S. In conclusion, this pre-pilot study adds to the international evidence that recommends newborn screening for MLD, making it possible for patients to benefit fully from treatment through early diagnosis.


Asunto(s)
Cerebrósido Sulfatasa , Leucodistrofia Metacromática , Tamizaje Neonatal , Humanos , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/terapia , Leucodistrofia Metacromática/genética , Tamizaje Neonatal/métodos , Recién Nacido , Proyectos Piloto , Cerebrósido Sulfatasa/genética , Femenino , Masculino , Sulfoglicoesfingolípidos , Lactante , Terapia Genética
7.
RNA Biol ; 18(sup2): 655-673, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34672913

RESUMEN

Non-membrane-bound compartments such as P-bodies (PBs) and stress granules (SGs) play important roles in the regulation of gene expression following environmental stresses. We have systematically and quantitatively determined the protein and mRNA composition of PBs and SGs formed before and after nutrient stress. We find that high molecular weight (HMW) complexes exist prior to glucose depletion that we propose may act as seeds for further condensation of proteins forming mature PBs and SGs. We identify an enrichment of proteins with low complexity and RNA binding domains, as well as long, structured mRNAs that are poorly translated following nutrient stress. Many proteins and mRNAs are shared between PBs and SGs including several multivalent RNA binding proteins that promote condensate interactions during liquid-liquid phase separation. We uncover numerous common protein and RNA components across PBs and SGs that support a complex interaction profile during the maturation of these biological condensates. These interaction networks represent a tuneable response to stress, highlighting previously unrecognized condensate heterogeneity. These studies therefore provide an integrated and quantitative understanding of the dynamic nature of key biological condensates.


Asunto(s)
Genómica , Cuerpos de Procesamiento/metabolismo , Proteómica , Gránulos de Estrés/metabolismo , Estrés Fisiológico , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Genómica/métodos , Glucosa/metabolismo , Humanos , Proteoma , Proteómica/métodos , Levaduras/fisiología
8.
Nucleic Acids Res ; 44(20): 9698-9709, 2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-27458202

RESUMEN

In protein synthesis translation factor eIF2 binds initiator tRNA to ribosomes and facilitates start codon selection. eIF2 GDP/GTP status is regulated by eIF5 (GAP and GDI functions) and eIF2B (GEF and GDF activities), while eIF2α phosphorylation in response to diverse signals is a major point of translational control. Here we characterize a growth suppressor mutation in eIF2ß that prevents eIF5 GDI and alters cellular responses to reduced eIF2B activity, including control of GCN4 translation. By monitoring the binding of fluorescent nucleotides and initiator tRNA to purified eIF2 we show that the eIF2ß mutation does not affect intrinsic eIF2 affinities for these ligands, neither does it interfere with eIF2 binding to 43S pre-initiation complex components. Instead we show that the eIF2ß mutation prevents eIF5 GDI stabilizing nucleotide binding to eIF2, thereby altering the off-rate of GDP from eIF2•GDP/eIF5 complexes. This enables cells to grow with reduced eIF2B GEF activity but impairs activation of GCN4 targets in response to amino acid starvation. These findings provide support for the importance of eIF5 GDI activity in vivo and demonstrate that eIF2ß acts in concert with eIF5 to prevent premature release of GDP from eIF2γ and thereby ensure tight control of protein synthesis initiation.


Asunto(s)
Factor 2B Eucariótico de Iniciación/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Biosíntesis de Proteínas , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Secuencia Conservada , Factor 2B Eucariótico de Iniciación/química , Factor 2B Eucariótico de Iniciación/genética , Evolución Molecular , Inhibidores de Disociación de Guanina Nucleótido/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas Represoras/química , Levaduras/efectos de los fármacos , Levaduras/genética , Levaduras/metabolismo
9.
PLoS Genet ; 11(1): e1004903, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25569619

RESUMEN

The mechanisms by which RNA-binding proteins control the translation of subsets of mRNAs are not yet clear. Slf1p and Sro9p are atypical-La motif containing proteins which are members of a superfamily of RNA-binding proteins conserved in eukaryotes. RIP-Seq analysis of these two yeast proteins identified overlapping and distinct sets of mRNA targets, including highly translated mRNAs such as those encoding ribosomal proteins. In paralell, transcriptome analysis of slf1Δ and sro9Δ mutant strains indicated altered gene expression in similar functional classes of mRNAs following loss of each factor. The loss of SLF1 had a greater impact on the transcriptome, and in particular, revealed changes in genes involved in the oxidative stress response. slf1Δ cells are more sensitive to oxidants and RIP-Seq analysis of oxidatively stressed cells enriched Slf1p targets encoding antioxidants and other proteins required for oxidant tolerance. To quantify these effects at the protein level, we used label-free mass spectrometry to compare the proteomes of wild-type and slf1Δ strains following oxidative stress. This analysis identified several proteins which are normally induced in response to hydrogen peroxide, but where this increase is attenuated in the slf1Δ mutant. Importantly, a significant number of the mRNAs encoding these targets were also identified as Slf1p-mRNA targets. We show that Slf1p remains associated with the few translating ribosomes following hydrogen peroxide stress and that Slf1p co-immunoprecipitates ribosomes and members of the eIF4E/eIF4G/Pab1p 'closed loop' complex suggesting that Slf1p interacts with actively translated mRNAs following stress. Finally, mutational analysis of SLF1 revealed a novel ribosome interacting domain in Slf1p, independent of its RNA binding La-motif. Together, our results indicate that Slf1p mediates a translational response to oxidative stress via mRNA-specific translational control.


Asunto(s)
Biosíntesis de Proteínas/genética , Proteínas de Unión al ARN/genética , Ribosomas/genética , Proteínas de Saccharomyces cerevisiae/genética , Regulación Fúngica de la Expresión Génica , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Proteínas de Unión al ARN/biosíntesis , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/biosíntesis , Análisis de Secuencia de ARN
10.
PLoS Genet ; 11(5): e1005233, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25973932

RESUMEN

Translation initiation factor eIF4E mediates mRNA selection for protein synthesis via the mRNA 5'cap. A family of binding proteins, termed the 4E-BPs, interact with eIF4E to hinder ribosome recruitment. Mechanisms underlying mRNA specificity for 4E-BP control remain poorly understood. Saccharomyces cerevisiae 4E-BPs, Caf20p and Eap1p, each regulate an overlapping set of mRNAs. We undertook global approaches to identify protein and RNA partners of both 4E-BPs by immunoprecipitation of tagged proteins combined with mass spectrometry or next-generation sequencing. Unexpectedly, mass spectrometry indicated that the 4E-BPs associate with many ribosomal proteins. 80S ribosome and polysome association was independently confirmed and was not dependent upon interaction with eIF4E, as mutated forms of both Caf20p and Eap1p with disrupted eIF4E-binding motifs retain ribosome interaction. Whole-cell proteomics revealed Caf20p mutations cause both up and down-regulation of proteins and that many changes were independent of the 4E-binding motif. Investigations into Caf20p mRNA targets by immunoprecipitation followed by RNA sequencing revealed a strong association between Caf20p and mRNAs involved in transcription and cell cycle processes, consistent with observed cell cycle phenotypes of mutant strains. A core set of over 500 Caf20p-interacting mRNAs comprised of both eIF4E-dependent (75%) and eIF4E-independent targets (25%), which differ in sequence attributes. eIF4E-independent mRNAs share a 3' UTR motif. Caf20p binds all tested motif-containing 3' UTRs. Caf20p and the 3'UTR combine to influence ERS1 mRNA polysome association consistent with Caf20p contributing to translational control. Finally ERS1 3'UTR confers Caf20-dependent repression of expression to a heterologous reporter gene. Taken together, these data reveal conserved features of eIF4E-dependent Caf20p mRNA targets and uncover a novel eIF4E-independent mode of Caf20p binding to mRNAs that extends the regulatory role of Caf20p in the mRNA-specific repression of protein synthesis beyond its interaction with eIF4E.


Asunto(s)
Represión Epigenética , Factor 4E Eucariótico de Iniciación/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Regulación hacia Abajo , Factor 4E Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Inmunoprecipitación , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Sistemas de Lectura Abierta , Unión Proteica , Biosíntesis de Proteínas , Proteómica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Análisis de Secuencia de ARN , Espectrometría de Masas en Tándem , Factores de Transcripción/genética
11.
J Cell Sci ; 127(Pt 6): 1254-62, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24424022

RESUMEN

The relocalization of translationally repressed mRNAs to mRNA processing bodies Pbodies is a key consequence of cellular stress across many systems. Pbodies harbor mRNA degradation components and are implicated in mRNA decay, but the relative timing and control of mRNA relocalization to Pbodies is poorly understood. We used the MS2GFP system to follow the movement of specific endogenous mRNAs in live Saccharomyces cerevisiae cells after nutritional stress. It appears that the relocalization of mRNA to Pbodies after stress is biphasic some mRNAs are present early, whereas others are recruited much later concomitant with recruitment of translation initiation factors, such as eIF4E. We also find that Bfr1p is a latephaselocalizing Pbody protein that is important for the delayed entry of certain mRNAS to Pbodies. Therefore, for the mRNAs tested, relocalization to Pbodies varies both in terms of the kinetics and factor requirements. This work highlights a potential new regulatory juncture in gene expression that would facilitate the overall rationalization of protein content required for adaptation to stress.


Asunto(s)
ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regulación Fúngica de la Expresión Génica , Estabilidad del ARN , Transporte de ARN , Saccharomyces cerevisiae/genética , Estrés Fisiológico
12.
Nucleic Acids Res ; 42(2): 1026-41, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24163252

RESUMEN

In response to stress, the translation of many mRNAs in yeast can change in a fashion discordant with the general repression of translation. Here, we use machine learning to mine the properties of these mRNAs to determine specific translation control signals. We find a strong association between transcripts acutely translationally repressed under oxidative stress and those associated with the RNA-binding protein Puf3p, a known regulator of cellular mRNAs encoding proteins targeted to mitochondria. Under oxidative stress, a PUF3 deleted strain exhibits more robust growth than wild-type cells and the shift in translation from polysomes to monosomes is attenuated, suggesting puf3Δ cells perceive less stress. In agreement, the ratio of reduced:oxidized glutathione, a major antioxidant and indicator of cellular redox state, is increased in unstressed puf3Δ cells but remains lower under stress. In untreated conditions, Puf3p migrates with polysomes rather than ribosome-free fractions, but this is lost under stress. Finally, reverse transcriptase-polymerase chain reaction (RT-PCR) of Puf3p targets following affinity purification shows Puf3p-mRNA associations are maintained or increased under oxidative stress. Collectively, these results point to Puf3p acting as a translational repressor in a manner exceeding the global translational response, possibly by temporarily limiting synthesis of new mitochondrial proteins as cells adapt to the stress.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Estrés Oxidativo/genética , Biosíntesis de Proteínas , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Eliminación de Gen , Glutatión/metabolismo , Oxidación-Reducción , Polirribosomas/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
13.
RNA ; 15(7): 1292-304, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19447917

RESUMEN

The U5 snRNA loop 1 aligns the 5' and 3' exons for ligation during the second step of pre-mRNA splicing. U5 is intimately associated with Prp8, which mediates pre-mRNA repositioning within the catalytic core of the spliceosome and interacts directly with U5 loop 1. The genome-wide effect of three U5 loop 1 mutants has been assessed by microarray analysis. These mutants exhibited impaired and improved splicing of subsets of pre-mRNAs compared to wild-type U5. Analysis of pre-mRNAs that accumulate revealed a change in base prevalence at specific positions near the splice sites. Analysis of processed pre-mRNAs exhibiting mRNA accumulation revealed a bias in base prevalence at one position within the 5' exon. While U5 loop 1 can interact with some of these positions the base bias is not directly related to sequence changes in loop 1. All positions that display a bias in base prevalence are at or next to positions known to interact with Prp8. Analysis of Prp8 in the presence of the three U5 loop 1 mutants revealed that the most severe mutant displayed reduced Prp8 stability. Depletion of U5 snRNA in vivo also resulted in reduced Prp8 stability. Our data suggest that certain mutations in U5 loop 1 perturb the stability of Prp8 and may affect interactions of Prp8 with a subset of pre-mRNAs influencing their splicing. Therefore, the integrity of U5 is important for the stability of Prp8 during splicing and provides one possible explanation for why U5 loop 1 and Prp8 are so highly conserved.


Asunto(s)
Empalme Alternativo , Mutación/genética , Precursores del ARN/genética , ARN Nuclear Pequeño/genética , Ribonucleoproteína Nuclear Pequeña U4-U6/química , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/química , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Secuencia de Bases , Genoma Fúngico , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Ribonucleoproteína Nuclear Pequeña U4-U6/genética , Ribonucleoproteína Nuclear Pequeña U5/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Empalmosomas/fisiología
14.
iScience ; 24(12): 103454, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34877508

RESUMEN

eIF2B is the guanine nucleotide exchange factor (GEF) required for cytoplasmic protein synthesis initiation in eukaryotes and its regulation within the integrated stress response (ISR). It activates its partner factor eIF2, thereby promoting translation initiation. Here we provide evidence through biochemical and genetic approaches that eIF2B can bind directly to GTP and this can enhance its rate of GEF activity toward eIF2-GDP in vitro. GTP binds to a subcomplex of the eIF2Bγ and ε subunits. The eIF2Bγ amino-terminal domain shares structural homology with hexose sugar phosphate pyrophosphorylase enzymes that bind specific nucleotides. A K66R mutation in eIF2Bγ is especially sensitive to guanine or GTP in a range of functional assays. Taken together, our data suggest eIF2Bγ may act as a sensor of purine nucleotide availability and thus modulate eIF2B activity and protein synthesis in response to fluctuations in cellular nucleotide levels.

15.
Sci Rep ; 11(1): 13467, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34188131

RESUMEN

By interacting with the mRNA 5' cap, the translation initiation factor eIF4E plays a critical role in selecting mRNAs for protein synthesis in eukaryotic cells. Caf20 is a member of the family of proteins found across eukaryotes termed 4E-BPs, which compete with eIF4G for interaction with eIF4E. Caf20 independently interacts with ribosomes. Thus, Caf20 modulates the mRNA selection process via poorly understood mechanisms. Here we performed unbiased mutagenesis across Caf20 to characterise which regions of Caf20 are important for interaction with eIF4E and with ribosomes. Caf20 binding to eIF4E is entirely dependent on a canonical motif shared with other 4E-BPs. However, binding to ribosomes is weakened by mutations throughout the protein, suggesting an extended binding interface that partially overlaps with the eIF4E-interaction region. By using chemical crosslinking, we identify a potential ribosome interaction region on the ribosome surface that spans both small and large subunits and is close to a known interaction site of eIF3. The function of ribosome binding by Caf20 remains unclear.


Asunto(s)
Factor 4E Eucariótico de Iniciación/química , ARN de Hongos/química , ARN Mensajero/química , Ribosomas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Factores de Transcripción/química , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Mutación , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
Antonie Van Leeuwenhoek ; 96(2): 149-59, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19005773

RESUMEN

Metal responsive MerR family transcriptional regulators are widespread in bacteria and activate the transcription of genes involved in metal ion detoxification, efflux, or homeostasis, in response to the presence of cognate metal species in the cytoplasm. MerR family regulators recognize and bind to dyad symmetrical DNA sequences in specific promoters that have a spacer region between the -35 and -10 sequences which is longer than the canonical 16-18 bp spacer for other sigma(70)-dependent promoters. In this study we report beta-galactosidase assays of MerR family-regulated gene expression in the multiple metal resistant bacterium Cupriavidus metallidurans. A series of pMU2385 reporter plasmid derivatives containing cloned MerR family-activated promoters were used to determine metal ion-induced responses from different MerR family regulated promoters, as well as regulators cloned with the cognate promoter into pMU2385. Mercuric ion-responsive MerR and lead ion-responsive PbrR activity was confirmed using this assay system as well as MerR family activator activity on heterologous promoters PcopA, PcadA, and Pzcc from Escherichia coli, Pseudomonas aeruginosa and Bordetella pertussis, respectively. In C. metallidurans CH34, transcription from these promoters was activated by MerR family regulators encoded on the chromosome or megaplasmids in response to copper (PcopA), and lead (PcadA and PzccA), showing that MerR family activators in C. metallidurans can act on MerR family promoters from other organisms, which have sequence differences to the predicted C. metallidurans promoters.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cupriavidus/metabolismo , Proteínas de Unión al ADN/metabolismo , Farmacorresistencia Bacteriana , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas/fisiología , Activación Transcripcional , Proteínas Bacterianas/genética , Secuencia de Bases , Cupriavidus/efectos de los fármacos , Cupriavidus/genética , Cupriavidus/crecimiento & desarrollo , Elementos Transponibles de ADN , ADN Bacteriano , Proteínas de Unión al ADN/genética , Iones/farmacología , Plomo/farmacología , Mercurio/farmacología , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
17.
Sci Rep ; 8(1): 7949, 2018 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-29785040

RESUMEN

The transcriptional responses of yeast cells to diverse stresses typically include gene activation and repression. Specific stress defense, citric acid cycle and oxidative phosphorylation genes are activated, whereas protein synthesis genes are coordinately repressed. This view was achieved from comparative transcriptomic experiments delineating sets of genes whose expression greatly changed with specific stresses. Less attention has been paid to the biological significance of 1) consistent, albeit modest, changes in RNA levels across multiple conditions, and 2) the global gene expression correlations observed when comparing numerous genome-wide studies. To address this, we performed a meta-analysis of 1379 microarray-based experiments in yeast, and identified 1388 blocks of RNAs whose expression changes correlate across multiple and diverse conditions. Many of these blocks represent sets of functionally-related RNAs that act in a coordinated fashion under normal and stress conditions, and map to global cell defense and growth responses. Subsequently, we used the blocks to analyze novel RNA-seq experiments, demonstrating their utility and confirming the conclusions drawn from the meta-analysis. Our results provide a new framework for understanding the biological significance of changes in gene expression: 'archetypal' transcriptional blocks that are regulated in a concerted fashion in response to external stimuli.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/genética , Estrés Fisiológico , Transcripción Genética , Perfilación de la Expresión Génica , Metaanálisis como Asunto , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Biochem Biophys Res Commun ; 364(1): 66-71, 2007 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-17931600

RESUMEN

ZinT (B1973), previously known as YodA, was originally characterised as a cadmium-induced periplasmic protein under the regulation of Fur and SoxS. Here we describe a decrease in zinT transcript in response to elevated copper concentrations and the zinc and copper dependent phenotype of a DeltazinT strain. Cadmium sensitivity of the DeltazinT strain was not observed. We demonstrate the binding of nickel, zinc, cadmium, and mercury, but not cobalt, copper, iron, and manganese, to purified ZinT using mass spectrometry. This and previous studies support the hypothesis that ZinT plays a role in zinc homeostasis and is required for growth under zinc limited conditions, suggesting that ZinT is either a periplasmic zinc chaperone or is involved in zinc import. Limited metal ion discrimination results in regulation of PzinT in a non-specific manner, which is mirrored in the binding of several different heavy metals by ZinT.


Asunto(s)
Cadmio/química , Proteínas de Escherichia coli/genética , Mercurio/química , Zinc/química , Secuencia de Aminoácidos , Cobre/farmacología , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Datos de Secuencia Molecular , Níquel/química , Unión Proteica , Alineación de Secuencia
19.
Elife ; 62017 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-28315520

RESUMEN

Phosphorylation of eIF2α controls translation initiation by restricting the levels of active eIF2-GTP/Met-tRNAi ternary complexes (TC). This modulates the expression of all eukaryotic mRNAs and contributes to the cellular integrated stress response. Key to controlling the activity of eIF2 are translation factors eIF2B and eIF5, thought to primarily function with eIF2-GDP and TC respectively. Using a steady-state kinetics approach with purified proteins we demonstrate that eIF2B binds to eIF2 with equal affinity irrespective of the presence or absence of competing guanine nucleotides. We show that eIF2B can compete with Met-tRNAi for eIF2-GTP and can destabilize TC. When TC is formed with unphosphorylated eIF2, eIF5 can out-compete eIF2B to stabilize TC/eIF5 complexes. However when TC/eIF5 is formed with phosphorylated eIF2, eIF2B outcompetes eIF5 and destabilizes TC. These data uncover competition between eIF2B and eIF5 for TC and identify that phosphorylated eIF2-GTP translation initiation intermediate complexes can be inhibited by eIF2B.


Asunto(s)
Factor 2B Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Factores de Iniciación de Péptidos/metabolismo , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/metabolismo , ARN Mensajero/metabolismo , ARN de Transferencia de Metionina/metabolismo , Factor 5A Eucariótico de Iniciación de Traducción
20.
Genome Biol ; 18(1): 201, 2017 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-29078784

RESUMEN

BACKGROUND: Translation factors eIF4E and eIF4G form eIF4F, which interacts with the messenger RNA (mRNA) 5' cap to promote ribosome recruitment and translation initiation. Variations in the association of eIF4F with individual mRNAs likely contribute to differences in translation initiation frequencies between mRNAs. As translation initiation is globally reprogrammed by environmental stresses, we were interested in determining whether eIF4F interactions with individual mRNAs are reprogrammed and how this may contribute to global environmental stress responses. RESULTS: Using a tagged-factor protein capture and RNA-sequencing (RNA-seq) approach, we have assessed how mRNA associations with eIF4E, eIF4G1 and eIF4G2 change globally in response to three defined stresses that each cause a rapid attenuation of protein synthesis: oxidative stress induced by hydrogen peroxide and nutrient stresses caused by amino acid or glucose withdrawal. We find that acute stress leads to dynamic and unexpected changes in eIF4F-mRNA interactions that are shared among each factor and across the stresses imposed. eIF4F-mRNA interactions stabilised by stress are predominantly associated with translational repression, while more actively initiating mRNAs become relatively depleted for eIF4F. Simultaneously, other mRNAs are insulated from these stress-induced changes in eIF4F association. CONCLUSION: Dynamic eIF4F-mRNA interaction changes are part of a coordinated early translational control response shared across environmental stresses. Our data are compatible with a model where multiple mRNA closed-loop complexes form with differing stability. Hence, unexpectedly, in the absence of other stabilising factors, rapid translation initiation on mRNAs correlates with less stable eIF4F interactions.


Asunto(s)
Factor 4F Eucariótico de Iniciación/metabolismo , Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/metabolismo , Estrés Fisiológico/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA