Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Dis Aquat Organ ; 104(3): 179-95, 2013 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-23759556

RESUMEN

Infectious hematopoietic necrosis virus (IHNV) occurs in North America as 3 major phylogenetic groups designated U, M, and L. In coastal Washington State, IHNV has historically consisted of U genogroup viruses found predominantly in sockeye salmon Oncorhynchus nerka. M genogroup IHNV, which has host-specific virulence for rainbow and steelhead trout O. mykiss, was detected only once in coastal Washington prior to 2007, in an epidemic among juvenile steelhead trout in 1997. Beginning in 2007 and continuing through 2011, there were 8 IHNV epidemics in juvenile steelhead trout, involving 7 different fish culture facilities in 4 separate watersheds. During the same time period, IHNV was also detected in asymptomatic adult steelhead trout from 6 coastal watersheds. Genetic typing of 283 recent virus isolates from coastal Washington revealed that the great majority were in the M genogroup of IHNV and that there were 2 distinct waves of viral emergence between the years 2007 and 2011. IHNV type mG110M was dominant in coastal steelhead trout during 2007 to 2009, and type mG139M was dominant between 2010 and 2011. Phylogenetic analysis of viral isolates indicated that all coastal M genogroup viruses detected in 1997 and 2007 to 2011 were part of the MD subgroup and that several novel genetic variants related to the dominant types arose in the coastal sites. Comparison of spatial and temporal incidence of coastal MD viruses with that of the rest of the Pacific Northwest indicated that the likely source of the emergent viruses was Columbia River Basin steelhead trout.


Asunto(s)
Enfermedades de los Peces/virología , Virus de la Necrosis Hematopoyética Infecciosa/genética , Oncorhynchus mykiss , Infecciones por Rhabdoviridae/veterinaria , Animales , Enfermedades de los Peces/epidemiología , Genotipo , Filogenia , ARN Viral , Infecciones por Rhabdoviridae/epidemiología , Infecciones por Rhabdoviridae/virología , Factores de Tiempo , Washingtón/epidemiología
2.
Neurosci Biobehav Rev ; 150: 105210, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37141961

RESUMEN

It has been established that early-life adversity impacts brain development, but the role of development itself has largely been ignored. We take a developmentally-sensitive approach to examine the neurodevelopmental sequelae of early adversity in a preregistered meta-analysis of 27,234 youth (birth to 18-years-old), providing the largest group of adversity-exposed youth to date. Findings demonstrate that early-life adversity does not have an ontogenetically uniform impact on brain volumes, but instead exhibits age-, experience-, and region-specific associations. Relative to non-exposed comparisons, interpersonal early adversity (e.g., family-based maltreatment) was associated with initially larger volumes in frontolimbic regions until ∼10-years-old, after which these exposures were linked to increasingly smaller volumes. By contrast, socioeconomic disadvantage (e.g., poverty) was associated with smaller volumes in temporal-limbic regions in childhood, which were attenuated at older ages. These findings advance ongoing debates regarding why, when, and how early-life adversity shapes later neural outcomes.


Asunto(s)
Encéfalo , Disparidades Socioeconómicas en Salud , Adolescente , Humanos , Niño , Pobreza , Estudios Longitudinales
3.
bioRxiv ; 2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36824818

RESUMEN

It has been established that early-life adversity impacts brain development, but the role of development itself has largely been ignored. We take a developmentally-sensitive approach to examine the neurodevelopmental sequelae of early adversity in a preregistered meta-analysis of 27,234 youth (birth to 18-years-old), providing the largest group of adversity-exposed youth to date. Findings demonstrate that early-life adversity does not have an ontogenetically uniform impact on brain volumes, but instead exhibits age-, experience-, and region-specific associations. Relative to non-exposed comparisons, interpersonal early adversity (e.g., family-based maltreatment) was associated with initially larger volumes in frontolimbic regions until ~10-years-old, after which these exposures were linked to increasingly smaller volumes. By contrast, socioeconomic disadvantage (e.g., poverty) was associated with smaller volumes in temporal-limbic regions in childhood, which were attenuated at older ages. These findings advance ongoing debates regarding why, when, and how early-life adversity shapes later neural outcomes.

4.
Methods Enzymol ; 660: 341-360, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34742397

RESUMEN

The safety and utility of adeno-associated virus (AAV) to modulate target gene expression has been well demonstrated, and AAV vectors are a leading gene therapy platform. However, manufacturing presents challenges in terms of productivity and scalability as compared to incumbent therapeutic modalities. In particular, a pivot from adherent cell- to suspension culture-based AAV manufacturing processes requires enhanced study of the transfection step. For the method proposed herein, a Response Surface Design of Experiments is suggested to explore the role of five transfection factors-cell density at transfection, DNA concentration, ratio of complexing reagent to DNA, and molar ratios of the transfecting plasmids-influencing viral genome titer and biological potency. Additionally, an AAV categorical factor matrix is presented for developing a workflow to interrogate the impact of AAV permutations for different capsid serotypes, harbored genes of interest, and inverted terminal repeat configurations on transfection process parameters.


Asunto(s)
Dependovirus , Vectores Genéticos , Línea Celular , Dependovirus/genética , Terapia Genética , Vectores Genéticos/genética , Transfección
5.
Elife ; 92020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32314732

RESUMEN

As part of the Reproducibility Project: Cancer Biology we published a Registered Report (Khan et al., 2015), that described how we intended to replicate selected experiments from the paper "A coding-independent function of gene and pseudogene mRNAs regulates tumour biology" (Poliseno et al., 2010). Here we report the results. We found PTEN depletion in the prostate cancer cell line DU145 did not detectably impact expression of the corresponding pseudogene PTENP1. Similarly, depletion of PTENP1 did not impact PTEN mRNA levels. The original study reported PTEN or PTENP1 depletion statistically reduced the corresponding pseudogene or gene (Figure 2G; Poliseno et al., 2010). PTEN and/or PTENP1 depletion in DU145 cells decreased PTEN protein expression, which was similar to the original study (Figure 2H; Poliseno et al., 2010). Further, depletion of PTEN and/or PTENP1 increased DU145 proliferation compared to non-targeting siRNA, which was in the same direction as the original study (Figure 2F; Poliseno et al., 2010), but not statistically significant. We found PTEN 3'UTR overexpression in DU145 cells did not impact PTENP1 expression, while the original study reported PTEN 3'UTR increased PTENP1 levels (Figure 4A; Poliseno et al., 2010). Overexpression of PTEN 3'UTR also statistically decreased DU145 proliferation compared to controls, which was similar to the findings reported in the original study (Figure 4A; Poliseno et al., 2010). Differences between the original study and this replication attempt, such as level of knockdown efficiency and cellular confluence, are factors that might have influenced the results. Finally, where possible, we report meta-analyses for each result.


Asunto(s)
Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Fosfohidrolasa PTEN/genética , Neoplasias de la Próstata/genética , Seudogenes/genética , Línea Celular Tumoral , Humanos , Masculino , ARN Mensajero/genética
6.
Elife ; 52016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26882073

RESUMEN

The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replications of selected experiments from a number of high-profile papers in the field of cancer biology. The papers, which were published between 2010 and 2012, were selected on the basis of citations and Altmetric scores (Errington et al., 2014). This Registered Report describes the proposed replication plan of key experiments from 'RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth' by Hatzivassiliou and colleagues, published in Nature in 2010 (Hatzivassiliou et al., 2010). Hatzivassiliou and colleagues examined the paradoxical response of RAF-WT tumors to treatment with RAF inhibitors. The key experiments being replicated include Figure 1A, in which the original authors demonstrated that treatment of a subset of BRAF(WT) tumor cell lines with RAF small molecule inhibitors resulted in an increase in cell viability, Figure 2B, which reported that RAF inhibitor activation of the MAPK pathway was dependent on CRAF but not BRAF, and Figure 4A, where the dimerization of BRAF and CRAF was modulated by the RAF inhibitor PLX4720, but not GDC-0879. The Reproducibility Project: Cancer Biology is a collaboration between the Center for Open Science and Science Exchange, and the results of the replications will be published by eLife.


Asunto(s)
Proliferación Celular , Neoplasias/patología , Inhibidores de Proteínas Quinasas/metabolismo , Transducción de Señal , Quinasas raf/antagonistas & inhibidores , Quinasas raf/metabolismo , Línea Celular Tumoral , Humanos , Modelos Biológicos , Reproducibilidad de los Resultados
7.
Elife ; 42015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26335297

RESUMEN

The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replications of selected experiments from a number of high-profile papers in the field of cancer biology. The papers, which were published between 2010 and 2012, were selected on the basis of citations and Altmetric scores (Errington et al., 2014). This Registered report describes the proposed replication plan of key experiments from 'A coding-independent function of gene and pseudogene mRNAs regulates tumour biology' by Poliseno et al. (2010), published in Nature in 2010. The key experiments to be replicated are reported in Figures 1D, 2F-H, and 4A. In these experiments, Poliseno and colleagues report microRNAs miR-19b and miR-20a transcriptionally suppress both PTEN and PTENP1 in prostate cancer cells (Figure 1D; Poliseno et al., 2010). Decreased expression of PTEN and/or PTENP1 resulted in downregulated PTEN protein levels (Figure 2H), downregulation of both mRNAs (Figure 2G), and increased tumor cell proliferation (Figure 2F; Poliseno et al., 2010). Furthermore, overexpression of the PTEN 3' UTR enhanced PTENP1 mRNA abundance limiting tumor cell proliferation, providing additional evidence for the co-regulation of PTEN and PTENP1 (Figure 4A; Poliseno et al., 2010). The Reproducibility Project: Cancer Biology is collaboration between the Center for Open Science and Science Exchange, and the results of the replications will be published in eLife.


Asunto(s)
Proliferación Celular , Regulación de la Expresión Génica , Genes , Seudogenes , ARN Mensajero/metabolismo , Línea Celular Tumoral , Humanos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA