Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Org Chem ; 84(16): 10076-10087, 2019 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-31328517

RESUMEN

Ion-molecule reactions between thiiranium ion 11 (m/z 213) and cyclohexene and cis-cyclooctene resulted in the formation of addition products 17a and 17b (m/z 295 and m/z 323, respectively) via an electrophilic addition pathway. Associative π-ligand exchange involving direct transfer of the PhS+ moiety, which has been observed for analogous seleniranium ions in the gas phase, did not occur despite previous solution experiments suggesting it as a valid pathway. DFT calculations at the M06-2X/def2-TZVP level of theory showed high barriers for the exchange reaction, while the addition pathway was more plausible. Further support for this pathway was provided with Hammett plots showing the rate of reaction to increase as the benzylic position of thiiranium ion derivatives became more electrophilic (ρ = +1.69; R2 = 0.974). The more reactive isomeric sulfonium ion 22 was discounted as being responsible for the observed reactivity with infrared spectroscopy and DFT calculations suggesting little possibility for isomerization. To further explore the differences in reactivity, thiiranium ion 25 and sulfonium ion 27 were formed independently, with the latter ion reacting over 260 times faster toward cis-cyclooctene than the thiiranium ion rationalized by calculations suggesting a barrierless pathway for sulfonium ion 27 to react with the cycloalkene.

2.
J Phys Chem A ; 123(38): 8200-8207, 2019 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-31512874

RESUMEN

The gas-phase ion-molecule identity exchange reactions of phenyl chalcogen iranium ions with alkenes have been examined experimentally in a linear ion trap mass spectrometer by isotope labeling experiments. The nature of both the alkene and the chalcogen play crucial roles, with the bimolecular rates for π-ligand exchange following the order: [PhTe(c-C6H10)]+ + c-C6D10 > [PhTe(C2D4)]+ + C2H4 > [PhSe(c-C6H10)]+ + c-C6D10, with no reaction being observed for [PhSe(C2D4)]+ + C2H4, [PhS(C2D4)]+ + C2H4, and [PhS(c-C6H10)]+ + c-C6D10. The experimental results correlate with RRKM modeling and density functional theory (DFT) calculations, which also demonstrates that these reactions proceed via associative mechanisms. Natural bond orbital (NBO) analysis reveals a shift in the association complexes from a σ-hole interaction to ones mirroring the π-p+ and n-π* at the transition state in accordance with the rates of reaction.

3.
Nature ; 491(7426): 717-23, 2012 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-23051753

RESUMEN

Antigen-presenting molecules, encoded by the major histocompatibility complex (MHC) and CD1 family, bind peptide- and lipid-based antigens, respectively, for recognition by T cells. Mucosal-associated invariant T (MAIT) cells are an abundant population of innate-like T cells in humans that are activated by an antigen(s) bound to the MHC class I-like molecule MR1. Although the identity of MR1-restricted antigen(s) is unknown, it is present in numerous bacteria and yeast. Here we show that the structure and chemistry within the antigen-binding cleft of MR1 is distinct from the MHC and CD1 families. MR1 is ideally suited to bind ligands originating from vitamin metabolites. The structure of MR1 in complex with 6-formyl pterin, a folic acid (vitamin B9) metabolite, shows the pterin ring sequestered within MR1. Furthermore, we characterize related MR1-restricted vitamin derivatives, originating from the bacterial riboflavin (vitamin B2) biosynthetic pathway, which specifically and potently activate MAIT cells. Accordingly, we show that metabolites of vitamin B represent a class of antigen that are presented by MR1 for MAIT-cell immunosurveillance. As many vitamin biosynthetic pathways are unique to bacteria and yeast, our data suggest that MAIT cells use these metabolites to detect microbial infection.


Asunto(s)
Ácido Fólico/metabolismo , Antígenos de Histocompatibilidad Clase I/química , Antígenos de Histocompatibilidad Clase I/inmunología , Pterinas/química , Pterinas/inmunología , Linfocitos T/inmunología , Presentación de Antígeno , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/microbiología , Sitios de Unión , Línea Celular , Cristalografía por Rayos X , Ácido Fólico/química , Ácido Fólico/inmunología , Antígenos de Histocompatibilidad/química , Antígenos de Histocompatibilidad/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Vigilancia Inmunológica/inmunología , Células Jurkat , Ligandos , Activación de Linfocitos , Antígenos de Histocompatibilidad Menor , Modelos Moleculares , Replegamiento Proteico/efectos de los fármacos , Pterinas/metabolismo , Pterinas/farmacología , Salmonella/inmunología , Salmonella/metabolismo , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/microbiología , Electricidad Estática , Microglobulina beta-2/inmunología , Microglobulina beta-2/metabolismo
4.
Eur J Mass Spectrom (Chichester) ; 24(1): 43-48, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29233003

RESUMEN

Two gas-phase catalytic cycles involving C-F bond activation of trifluoroethanol and trifluoroacetic acid were detected by multistage mass spectrometry experiments. A binuclear dimolybdate centre [Mo2O6(F)]- acts as the catalyst in each cycle. The first cycle, entered via the reaction of [Mo2O6(OH)]- with trifluoroethanol and elimination of water to form [Mo2O6(OCH2CF3)]-, proceeds via four steps: (1) oxidation of the alkoxo ligand and its elimination as aldehyde; (2) reaction of [Mo2O5(OH)]- with trifluoroethanol and elimination of water to form [Mo2O5(OCH2CF3)]; (3) decomposition of the alkoxo ligand via loss of 1,1 difluoroethene; and (4) reaction of [Mo2O6(F)]- with a second equivalent of trifluoroethanol to regenerate Mo2O6(OCH2CF3)]-. Steps (2) and (3) do not occur at room temperature and require collisional activation to proceed. The second cycle is entered via the reaction of [Mo2O6(OH)]- with trifluoroacetic acid and elimination of water to form [Mo2O6(O2CCF3)]- and involves two steps only: (1) fluoride transfer to a molybdenum centre to form [Mo2O6(F)]-; (2) reaction of [Mo2O6(F)]- with trifluoroacetic acid and loss of water to regenerate [Mo2O6(O2CCF3)]-. Comparisons are made with the chemistry of [Mo2O6(OH)]- reacting with acetic acid.

5.
J Org Chem ; 82(12): 6289-6297, 2017 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-28530810

RESUMEN

Collision-induced dissociation mass spectrometry of the ammonium ions 4a and 4b results in the formation of the seleniranium ion 5, the structure and purity of which were verified using gas-phase infrared spectroscopy coupled to mass spectrometry and gas-phase ion-mobility measurements. Ion-molecule reactions between the ion 5 (m/z = 261) and cyclopentene, cyclohexene, cycloheptene, and cyclooctene resulted in the formation of the seleniranium ions 7 (m/z = 225), 6 (m/z = 239), 8 (m/z = 253), and 9 (m/z = 267), respectively. Further reaction of seleniranium 6 with cyclopentene resulted in further π-ligand exchange giving seleniranium ion 7, confirming that direct π-ligand exchange between seleniranium ion 5 and cycloalkenes occurs in the gas phase. Pseudo-first-order kinetics established relative reaction efficiencies for π-ligand exchange for cyclopentene, cyclohexene, cycloheptene. and cyclooctene as 0.20, 0.07, 0.43, and 4.32. respectively. DFT calculations at the M06/6-31+G(d) level of theory provide the following insights into the mechanism of the π-ligand exchange reactions; the cycloalkene forms a complex with the seleniranium ion 5 with binding energies of 57 and 62 kJ/mol for cyclopentene and cyclohexene, respectively, with transition states for π-ligand exchange having barriers of 17.8 and 19.3 kJ/mol for cyclopentene and cyclohexene, respectively.

6.
J Am Chem Soc ; 137(42): 13588-93, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26469559

RESUMEN

Gas-phase studies utilizing ion-molecule reactions, supported by computational chemistry, demonstrate that the reaction of the enolate complexes [(CH2CO2-C,O)M(CH3)](-) (M = Ni (5a), Pd (5b)) with allyl acetate proceed via oxidative addition to give M(IV) species [(CH2CO2-C,O)M(CH3)(η(1)-CH2-CH═CH2)(O2CCH3-O,O')](-) (6) that reductively eliminate 1-butene, to form [(CH2CO2-C,O)M(O2CCH3-O,O')](-) (4). The mechanism contrasts with the M(II)-mediated pathway for the analogous reaction of [(phen)M(CH3)](+) (1a,b) (phen = 1,10-phenanthroline). The different pathways demonstrate the marked effect of electron-rich metal centers in enabling higher oxidation state pathways. Due to the presence of two alkyl groups, the metal-occupied d orbitals (particularly dz(2)) in 5 are considerably destabilized, resulting in more facile oxidative addition; the electron transfer from dz(2) to the C═C π* orbital is the key interaction leading to oxidative addition of allyl acetate to M(II). Upon collision-induced dissociation, 4 undergoes decarboxylation to form 5. These results provide support for the current exploration of roles for Ni(IV) and Pd(IV) in organic synthesis.

7.
Rapid Commun Mass Spectrom ; 29(15): 1395-402, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26147479

RESUMEN

RATIONALE: Non-covalent amino acid clusters are the subject of intense research in diverse areas including peptide bond formation studies or the determination of proton affinities or methylating abilities of amino acids. However, most of the research has focused on positive ions and little is known about anionic clusters. METHODS: Fragmentation reactions of deprotonated tryptophan (Trp), [Trp-H](-) and Trp singly deprotonated non-covalently bound clusters [Trp(n) -H](-), n = 2, 3, 4, were investigated using low-energy collision-induced dissociation (CID) with He atoms, high-energy CID with Na atoms, and electron-induced dissociation (EID) with 20-35 eV electrons. Fragmentation of the monomeric Trp anion, where all labile hydrogens were exchanged for deuterium [d(4) -Trp-D](-), was investigated using low-energy CID and EID, in order to shed light on the dissociation mechanisms. RESULTS: The main fragmentation channel for Trp cluster anions, [Trp(n) -H](-), n >1, is the loss of the neutral monomer. The fragmentation of the deprotonated Trp monomer induced by electrons resembles the fragmentation induced by high-energy collisions through electronic excitation of the parent. However, the excitation must precede in a different way, shown through only monomer loss from larger clusters, n >1, in case of EID, but intracluster chemistry in the case of high-energy CID. CONCLUSIONS: The anion of the indole ring C(8)H(6) N(-) has been identified in the product ion spectra of [Trp(n) -H](-) using all activation methods, thus providing a diagnostic marker ion. No evidence was found for formation of peptide bonds as a route to prebiotic peptides in the fragmentation reactions of these singly deprotonated Trp cluster ions.


Asunto(s)
Protones , Espectrometría de Masa por Ionización de Electrospray/métodos , Triptófano/química , Aniones/química , Péptidos/química
8.
Phys Chem Chem Phys ; 17(39): 25837-44, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25942055

RESUMEN

Guanine radical cations are formed upon oxidation of DNA. Deoxyguanosine (dG) is used as a model, and the gas-phase infrared (IR) spectroscopic signature and gas-phase unimolecular and bimolecular chemistry of its radical cation, dG˙(+), A, which is formed via direct electrospray ionisation (ESI/MS) of a methanolic solution of Cu(NO3)2 and dG, are examined. Quantum chemistry calculations have been carried out on 28 isomers and comparisons between their calculated IR spectra and the experimentally-measured spectra suggest that A exists as the ground-state keto tautomer. Collision-induced dissociation (CID) of A proceeds via cleavage of the glycosidic bond, while its ion­molecule reactions with amine bases occur via a number of pathways including hydrogen-atom abstraction, proton transfer and adduct formation. A hidden channel, involving isomerisation of the radical cation via adduct formation, is revealed through the use of two stages of CID, with the final stage of CID showing the loss of CH2O as a major fragmentation pathway from the reformed radical cation, dG˙(+). Quantum chemistry calculations on the unimolecular and bimolecular reactivity are also consistent with A being present as a ground-state keto tautomer.


Asunto(s)
Desoxiguanosina/química , Radicales Libres/química , Cationes/química , Gases/química , Isomerismo , Espectrometría de Masa por Ionización de Electrospray , Espectrofotometría Infrarroja
9.
Phys Chem Chem Phys ; 17(39): 25772-7, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25827635

RESUMEN

The bis(diphenylphosphino)methane (L = Ph2PCH2PPh2) ligated silver deuteride nanocluster dication, [Ag10D8L6](2+), has been synthesised in the condensed phase via the reaction of bis(diphenylphosphino)methane, silver nitrate and sodium borodeuteride in the methanol : chloroform (1 : 1) mixed solvent system. The photoionisation and photofragmentation of this mass-selected cluster were studied using a linear ion trap coupled to the DESIRS VUV beamline of the SOLEIL Synchrotron. At 15.5 eV the main ionic products observed are [Ag10D8L5](2+), [Ag10D8L4](2+), [Ag10D8L6](3+)˙, [Ag9D8L4](2+)˙, and [AgL2](+). The later two products arise from fragmentation of [Ag10D8L6](3+)˙. An analysis of the yields of these product ions as a function of the photon energy reveals the onset for the formation of [AgL2](+) and [Ag9D8L4](2+)˙ is around 2 eV higher than that for ionisation to produce [Ag10D8L5](3+)˙. The onset of ionisation energy of [Ag10D8L6](2+) was determined to be 9.3 ± 0.3 eV from a fit of the yield of the product ion, [Ag10D8L6](3+)˙, as a function of the VUV photon energy. DFT calculations at the RI-PBE/RECP-def2-SVP level of theory were carried out to search for a possible structure of the cluster and to estimate its vertical and adiabatic ionisation energies. The calculated lowest energy structure of the [Ag10D8L6](2+) nanocluster contains a symmetrical bicapped square antiprism as a silver core in which hydrides are located as a mix of triangular faces and edges. Four of the bisphosphines bind to the edges of the cluster core as bidentate ligands, the remaining two bisphosphines bind via a single phosphorus donor atom to each of the apical silver atoms. The DFT calculated adiabatic ionisation energy for this structure is 8.54 eV, in satisfactory agreement with experiment.


Asunto(s)
Derivados del Benceno/química , Deuterio/química , Metano/análogos & derivados , Compuestos Organofosforados/química , Plata/química , Gases/química , Iones/química , Modelos Moleculares , Fotólisis , Espectrometría de Masa por Ionización de Electrospray , Rayos Ultravioleta
10.
Angew Chem Int Ed Engl ; 54(44): 12947-51, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26480331

RESUMEN

Although the deleterious effects of ozone on the human respiratory system are well-known, many of the precise chemical mechanisms that both cause damage and afford protection in the pulmonary epithelial lining fluid are poorly understood. As a key first step to elucidating the intrinsic reactivity of ozone with proteins, its reactions with deprotonated cysteine [Cys-H](-) are examined in the gas phase. Reaction proceeds at near the collision limit to give a rich set of products including 1) sequential oxygen atom abstraction reactions to yield cysteine sulfenate, sulfinate and sulfonate anions, and significantly 2) sulfenate radical anions formed by ejection of a hydroperoxy radical. The free-radical pathway occurs only when both thiol and carboxylate moieties are available, implicating electron-transfer as a key step in this reaction. This novel and facile reaction is also observed in small cys-containing peptides indicating a possible role for this chemistry in protein ozonolysis.


Asunto(s)
Cisteína/química , Ozono/química , Radicales Libres/síntesis química , Radicales Libres/química , Gases/química , Estructura Molecular , Protones
11.
Chemistry ; 20(50): 16626-33, 2014 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-25324009

RESUMEN

Multistage mass spectrometry and density functional theory (DFT) were used to characterise the small silver hydride nanocluster, [Ag3 H2 L](+) (where L=(Ph2 P)2 CH2 ) and its gas-phase unimolecular chemistry. Collision-induced dissociation (CID) yields [Ag2 HL](+) as the major product while laser-induced dissociation (LID) proceeds via H2 formation and subsequent release from [Ag3 H2 L](+) , giving rise to [Ag3 L](+) as the major product. Deuterium labelling studies on [Ag3 D2 L](+) prove that the source of H2 is from the hydrides and not from the ligand. Comparison of TD-DFT absorption patterns obtained for the optimised structures with action spectroscopy results, allows assignment of the measured features to structures of precursors and products. Molecular dynamics "on the fly" reveal that AgH loss is favoured in the ground state, but H2 formation and loss is preferred in the first excited state S1 , in agreement with CID and LID experimental findings. This indicates favourable photo-induced formation of H2 and subsequent release from [Ag3 H2 L](+) , an important finding in context of metal hydrides as a hydrogen storage medium, which can subsequently be released by heating or irradiation with light.

12.
J Org Chem ; 79(24): 12056-69, 2014 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-25329236

RESUMEN

Gas-phase carbon-carbon bond forming reactions, catalyzed by group 10 metal acetate cations [(phen)M(O2CCH3)](+) (where M = Ni, Pd or Pt) formed via electrospray ionization of metal acetate complexes [(phen)M(O2CCH3)2], were examined using an ion trap mass spectrometer and density functional theory (DFT) calculations. In step 1 of the catalytic cycle, collision induced dissociation (CID) of [(phen)M(O2CCH3)](+) yields the organometallic complex, [(phen)M(CH3)](+), via decarboxylation. [(phen)M(CH3)](+) reacts with allyl acetate via three competing reactions, with reactivity orders (% reaction efficiencies) established via kinetic modeling. In step 2a, allylic alkylation occurs to give 1-butene and reform metal acetate, [(phen)M(O2CCH3)](+), with Ni (36%) > Pd (28%) > Pt (2%). Adduct formation, [(phen)M(C6H11O2)](+), occurs with Pt (24%) > Pd (21%) > Ni(11%). The major losses upon CID on the adduct, [(phen)M(C6H11O2)](+), are 1-butene for M = Ni and Pd and methane for Pt. Loss of methane only occurs for Pt (10%) to give [(phen)Pt(C5H7O2)](+). The sequences of steps 1 and 2a close a catalytic cycle for decarboxylative carbon-carbon bond coupling. DFT calculations suggest that carbon-carbon bond formation occurs via alkene insertion as the initial step for all three metals, without involving higher oxidation states for the metal centers.


Asunto(s)
Acetatos/química , Compuestos Alílicos/química , Complejos de Coordinación/química , Catálisis , Descarboxilación , Estructura Molecular , Níquel/química , Oxidación-Reducción , Paladio/química , Teoría Cuántica
13.
Inorg Chem ; 53(14): 7429-37, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24991699

RESUMEN

A bis(diphenylphosphino)methane-ligated trinuclear silver hydride nanocluster, [Ag3((Ph2P)2CH2)3(µ3-H)](BF4)2, featuring three silver(I) ions coordinated to a µ3-hydride, and its deuteride analogue, [Ag3((Ph2P)2CH2)3(µ3-D)](BF4)2, have been isolated and structurally characterized using electrospray ionization mass spectrometry (ESI-MS), X-ray crystallography, NMR and IR spectroscopy. The position of the deuteride in [Ag3((Ph2P)2CH2)3(µ3-D)](BF4)2 was determined by neutron diffraction. ESI-MS of [Ag3L3(µ3-H/D)](BF4)2 [L = ((Ph2P)2CH2)2] produces [Ag3L3(µ3-H/D)](2+) and [Ag3L3(µ3-H/D)(BF4)](+). A rich gas-phase ion chemistry of [Ag3L3(µ3-H/D)](2+) is observed under conditions of collision-induced dissociation (CID) and electron-capture dissociation (ECD). CID gives rise to the following complementary ion pairs: [Ag3L2](+) and [L+(H/D)](+); [Ag2(H/D)L2](+) and [AgL](+); [Ag2(H/D)L](+) and [AgL2](+). ECD gives rise to a number of dissociation channels including loss of the bis(phosphine) ligand, fragmentation of a coordinated bis(phosphine) ligand via C-P bond activation, and loss of a hydrogen (deuterium) atom with concomitant formation of [Ag3L3](+). Under CID conditions, [Ag3L3(µ3-H/D)(BF4)](+) fragments via ligand loss, the combined loss of a ligand and [H,B,F4], and cluster fragmentation to give [Ag2(BF4)L2](+) and [Ag2(L-H)L](+) [where (L-H) = (Ph2P)2CH(-)].


Asunto(s)
Nanoestructuras , Plata/química , Cristalografía por Rayos X , Neutrones , Espectroscopía de Protones por Resonancia Magnética
14.
J Phys Chem A ; 118(18): 3295-306, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24712711

RESUMEN

Product and mechanistic studies were performed for the reaction of aromatic distonic peroxyl radical cations 4-PyrOO(•+) and 3-PyrOO(•+) with phenylacetylene (7) in the gas phase using mass spectrometric and computational techniques. PyrOO(•+) was generated through reaction of the respective distonic aryl radical cation Pyr(•+) with O2 in the ion source of the mass spectrometer. For the reaction involving the more electrophilic 4-PyrOO(•+), a rate coefficient of k1 = (2.2 ± 0.6) × 10(-10) cm(3) molecule(-1) s(-1) was determined at 298 K, while a value of k2 = (8.2 ± 2.1) × 10(-11) cm(3) molecule(-1) s(-1) was obtained for the reaction involving the less electrophilic 3-PyrOO(•+). This highlights the role of polar effects in these reactions, which are likely of high relevance for processes in combustions and atmospheric transformations. The mechanism was studied by computational methods, which showed that radical addition occurs exclusively at the less substituted alkyne site to give the distonic vinyl radical cation 8. The latter undergoes a series of subsequent rearrangements/fragmentations that are similar for both isomeric PyrOO(•+). γ-Fragmentation in 8 leads to the distonic aryloxyl radical cation PyrO(•+) and a singlet carbene 10. The product association complex [PyrO(•+) - 10] is the starting point for two important subsequent reactions, e.g., (i) rapid hydrogen transfer to form ketenyl radical 11 and the closed-shell species PyrOH(+), and (ii) oxygen transfer from PyrO(•+) to 10 that leads to α-keto aldehyde 13 and Pyr(•+), followed by hydrogen abstraction to give acyl radical 14 and PyrH(+). Additional major products are the closed-shell aromatic carbonyl compounds 20 and 30 that result from multistep rearrangements in vinyl radical 8, which are terminated by homolytic bond scission and release of neutral acyl radicals.


Asunto(s)
Acetileno/análogos & derivados , Peróxidos/química , Acetileno/química , Espectrometría de Masas , Simulación de Dinámica Molecular , Estructura Molecular
15.
Angew Chem Int Ed Engl ; 53(41): 10979-83, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25079912

RESUMEN

A combination of gas-phase ion-molecule reaction experiments and theoretical kinetic modeling is used to examine how a salt can influence the kinetic basicity of organometallates reacting with water. [HC≡CLiCl](-) reacts with water more rapidly than [HC≡CMgCl2](-), consistent with the higher reactivity of organolithium versus organomagnesium reagents. Addition of LiCl to [HC≡CLiCl](-) or [HC≡CMgCl2](-) enhances their reactivity towards water by a factor of about 2, while addition of MgCl2 to [HC≡CMgCl2](-) enhances its reactivity by a factor of about 4. Ab initio calculations coupled with master equation/RRKM theory kinetic modeling show that these reactions proceed via a mechanism involving formation of a water adduct followed by rearrangement, proton transfer, and acetylene elimination as either discrete or concerted steps. Both the energy and entropy requirements for these elementary steps need to be considered in order to explain the observed kinetics.


Asunto(s)
Alquinos/química , Gases/química , Cloruro de Litio/química , Cloruro de Magnesio/química , Cinética , Espectrometría de Masa por Ionización de Electrospray , Termodinámica , Agua/química
16.
J Org Chem ; 78(6): 2175-90, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23343519

RESUMEN

Glucuronosyl diacylglycerides (GlcAGroAc2) are functionally important glycolipids and membrane anchors for cell wall lipoglycans in the Corynebacteria. Here we describe the complete synthesis of distinct acyl-isoforms of GlcAGroAc2 bearing both acylation patterns of (R)-tuberculostearic acid (C19:0) and palmitic acid (C16:0) and their mass spectral characterization. Collision-induced fragmentation mass spectrometry identified characteristic fragment ions that were used to develop "rules" allowing the assignment of the acylation pattern as C19:0 (sn-1), C16:0 (sn-2) in the natural product from Mycobacterium smegmatis, and the structural assignment of related C18:1 (sn-1), C16:0 (sn-2) GlcAGroAc2 glycolipids from M. smegmatis and Corynebacterium glutamicum. A synthetic hydrophobic octyl glucuronoside was used to characterize the GDP-mannose-dependent mannosyltransferase MgtA from C. glutamicum that extends GlcAGroAc2. This enzyme is an Mg(2+)/Mn(2+)-dependent metalloenzyme that undergoes dramatic activation upon reduction with dithiothreitol.


Asunto(s)
Proteínas Bacterianas/química , Corynebacterium/química , Glicéridos/análisis , Glicéridos/síntesis química , Glucolípidos/análisis , Glucolípidos/síntesis química , Magnesio/química , Manosiltransferasas/química , Mycobacterium smegmatis/química , Mycobacterium/química , Ácidos Esteáricos/química , Vías Biosintéticas , Glicéridos/química , Glucolípidos/química , Espectrometría de Masas
17.
J Phys Chem A ; 117(6): 1124-35, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-22889366

RESUMEN

The gas-phase reactivity of the vanadium hydroxides [VO(2)(OH)(2)](-) and [V(2)O(5)(OH)](-) toward methanol was examined using a combination of ion-molecule reactions (IMRs) and collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer. Isotope-labeling experiments with CD(3)OH, (13)CH(3)OH, and CH(3)(18)OH were used to confirm the stoichiometry of ions and the observed sequence of reactions. The experimental data were interpreted with the aid of density functional theory calculations, carried out at the B3LYP/SDD6-311++G** level of theory. While [VO(2)(OH)(2)](-) is unreactive, [V(2)O(5)(OH)](-) undergoes a metathesis reaction to yield [V(2)O(5)(OCH(3))](-). The DFT calculations reveal that the metathesis reaction of methanol with [VO(2)(OH)(2)](-) suffers from a barrier of +0.52 eV (relative to separated reactants) but that the reaction of [V(2)O(5)(OH)](-) with methanol readily proceeds via addition/elimination reactions with both transition states being below the energy of the separated reactants. CID of [V(2)O(5)(OCH(3))](-) (m/z 213) yields three ions arising from activation of the methoxo ligand: [V(2), O(6), C, H](-) (m/z 211); [V(2), O(5), H](-) (m/z 183); and [V(2), O(4), H](-) (m/z 167). Additional experiments and DFT calculations suggest that these ions arise from losses of H(2), formaldehyde and the sequential losses of H(2) and CO(2), respectively. The use of an (18)O-labeled methoxo ligand in [V(2)O(5)((18)OCH(3))](-) (m/z 215) showed the competing losses of H(2)C(16)O and H(2)C(18)O and [H(2) and C(16)O(18)O] and [H(2) and C(16)O(2)], highlighting that (16)O/(18)O exchange between the methoxo ligand and the vanadium oxide occurs prior to the subsequent fragmentation of the ligand. DFT calculations reveal that a key step involves hydrogen atom transfer from the methoxo ligand to the oxo ligand of the same vanadium center, producing the intermediate [V(2)O(4)(OH)(OCH(2))](-) containing a ketyl radical ligand and a hydroxo ligand. This intermediate can either undergo CH(2)O loss, or the ketyl radical can couple with an oxo ligand of the adjacent vanadium center, producing [V(2)O(3)(µ(2)-O(2)CH(2))](-), which is a key intermediate in the (16)O/(18)O scrambling and in the H(2) loss channel.


Asunto(s)
Hidróxidos/química , Metanol/química , Teoría Cuántica , Compuestos de Vanadio/química , Gases/química
18.
Angew Chem Int Ed Engl ; 51(16): 3812-7, 2012 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-22344975

RESUMEN

Controversy resolved! A combination of gas-phase ion-molecule reactions and theoretical studies confirm bisligated mononuclear Au(I) complexes are unable to undergo oxidative addition of iodobenzene for Sonogashira coupling, but that the ligated gold clusters [Au(3)L(n)](+) (L=Ph(2)P(CH(2))(n)PPh(2); n=3-6) activate the C-I bond. DFT calculations on the transition states show that the linker size n tunes the cluster reactivity.

19.
Rapid Commun Mass Spectrom ; 25(14): 2083-8, 2011 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-21698691

RESUMEN

Previous studies have shown that highly reactive product ions formed by collision-induced dissociation (CID) of precursor ions generated via electrospray can readily react with residual solvent or drying gases, especially in ion trap mass spectrometers. Here we report on the rapid addition of nitrogen to the coordinatively unsaturated organoplatinum cation, [(phen)Pt(CH(3))](+) (phen=1,10-phenanthroline) formed via decarboxylation of the acetate complex [(phen)Pt(O(2) CCH(3))](+). This contrasts with the related coordinatively unsaturated group 10 cations: addition of nitrogen to [(phen)Pd(CH(3))](+) occurs at longer reaction times, whereas addition of nitrogen to [(phen)Ni(CH(3))](+) is virtually non-existent. To better understand these reactions, density functional theory (DFT) calculations were carried out at the B3LYP/SDD6-31+G(d) level of theory to determine the N(2)-binding energies of [(phen)M(CH(3))](+). [(phen)Pt(CH(3))](+) has a higher binding energy to N(2) (1.06 eV) than either [(phen)Ni(CH(3))](+) (0.61 eV) or [(phen)Pd(CH(3))](+) (0.66 eV), consistent with the experimental ease of addition of nitrogen to the coordinatively unsaturated organometallic complexes, [(phen)M(CH(3))](+). Finally, [(phen)M(CH(3))](+) are reactive to other background gases, forming [(phen)M(O(2))](.+) (for M=Ni) in reactions with oxygen and undergoing water addition (for M=Ni, Pd and Pt) and water addition/CH(4) elimination reactions to yield [(phen)M(OH)](+) (for M=Ni and Pt).


Asunto(s)
Complejos de Coordinación/química , Níquel/química , Nitrógeno/química , Paladio/química , Platino (Metal)/química , Compuestos Organoplatinos/química , Espectrometría de Masa por Ionización de Electrospray , Termodinámica
20.
Org Biomol Chem ; 9(8): 2751-9, 2011 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21359363

RESUMEN

The fixed charge zwitterionic sulfur betaines dimethylsulfonioacetate (DMSA) (CH(3))(2)S(+)CH(2)CO(2)(-) and dimethylsulfoniopropionate (DMSP) (CH(3))(2)S(+)(CH(2))(2)CO(2)(-) have been synthesized and the structures of their protonated salts (CH(3))(2)S(+)CH(2)CO(2)H···Cl(-) [DMSA.HCl] and (CH(3))(2)S(+)(CH(2))(2)CO(2)H···Pcr(-) [DMSP.HPcr] (where Pcr = picrate) have been characterized using X-ray crystallography. The unimolecular chemistry of the [M+H](+) of these betaines was studied using two techniques; collision-induced dissociation (CID) and electron-induced dissociation (EID) in a hybrid linear ion trap Fourier transform ion cyclotron resonance mass spectrometer. Results from the CID study show a richer series of fragmentation reactions for the shorter chain betaine and contrasting main fragmentation pathways. Thus while (CH(3))(2)S(+)(CH(2))(2)CO(2)H fragments via a neighbouring group reaction to generate (CH(3))(2)S(+)H and the neutral lactone as the most abundant fragmentation channel, (CH(3))(2)S(+)CH(2)CO(2)H fragments via a 1,2 elimination reaction to generate CH(3)S(+)=CH(2) as the most abundant fragment ion. To gain insights into these fragmentation reactions, DFT calculations were carried out at the B3LYP/6-311++G(2d,p) level of theory. For (CH(3))(2)S(+)CH(2)CO(2)H, the lowest energy pathway yields CH(3)S(+)=CH(2)via a six-membered transition state. The two fragment ions observed in CID of (CH(3))(2)S(+)(CH(2))(2)CO(2)H are shown to share the same transition state and ion-molecule complex forming either (CH(3))(2)S(+)H or (CH(2))(2)CO(2)H(+). Finally, EID shows a rich and relatively similar fragmentation channels for both protonated betaines, with radical cleavages being observed, including loss of ˙CH(3).


Asunto(s)
Betaína/química , Protones , Azufre/química , Modelos Moleculares , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA