Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Cell Mol Med ; 28(2): e17993, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37847125

RESUMEN

Alzheimer's disease (AD) is a heterogeneous neurodegenerative disease with multifaceted neuropathological disorders. AD is characterized by intracellular accumulation of phosphorylated tau proteins and extracellular deposition of amyloid beta (Aß). Various protease enzymes, including neprilysin (NEP), are concerned with the degradation and clearance of Aß. Indeed, a defective neuronal clearance pathway due to the dysfunction of degradation enzymes might be a possible mechanism for the accumulation of Aß and subsequent progression of AD neuropathology. NEP is one of the most imperative metalloproteinase enzymes involved in the clearance of Aß. This review aimed to highlight the possible role of NEP inhibitors in AD. The combination of sacubitril and valsartan which is called angiotensin receptor blocker and NEP inhibitor (ARNI) may produce beneficial and deleterious effects on AD neuropathology. NEP inhibitors might increase the risk of AD by the inhibition of Aß clearance, and increase brain bradykinin (BK) and natriuretic peptides (NPs), which augment the pathogenesis of AD. These verdicts come from animal model studies, though they may not be applied to humans. However, clinical studies revealed promising safety findings regarding the use of ARNI. Moreover, NEP inhibition increases various neuroprotective peptides involved in inflammation, glucose homeostasis and nerve conduction. Also, NEP inhibitors may inhibit dipeptidyl peptidase 4 (DPP4) expression, ameliorating insulin and glucagon-like peptide 1 (GLP-1) levels. These findings proposed that NEP inhibitors may have a protective effect against AD development by increasing GLP-1, neuropeptide Y (NPY) and substance P, and deleterious effects by increasing brain BK. Preclinical and clinical studies are recommended in this regard.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Animales , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Neprilisina/metabolismo , Péptido 1 Similar al Glucagón
2.
BMC Plant Biol ; 24(1): 607, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926889

RESUMEN

BACKGROUND: Salinity is a major abiotic stress, and the use of saline water in the agricultural sector will incur greater demand under the current and future climate changing scenarios. The objective of this study was to develop a dual-functional nanofertilizer capable of releasing a micronutrient that nourishes plant growth while enhancing salt stress resilience in faba bean (Vicia faba L.). RESULTS: Moringa oleifera leaf extract was used to synthesize sulfur nanoparticles (SNPs), which were applied as a foliar spray at different concentrations (0, 25, 50, and 100 mg/l) to mitigate the negative effects of salt stress (150 mM NaCl) on faba bean plants. The SNPs were characterized and found to be spherical in shape with an average size of 10.98 ± 2.91 nm. The results showed that salt stress had detrimental effects on the growth and photosynthetic performance (Fv/Fm) of faba bean compared with control, while foliar spraying with SNPs improved these parameters under salinity stress. SNPs application also increased the levels of osmolytes (soluble sugars, amino acids, proline, and glycine betaine) and nonenzymatic antioxidants, while reducing the levels of oxidative stress biomarkers (MDA and H2O2). Moreover, SNPs treatment under salinity stress stimulated the activity of antioxidant enzymes (ascorbate peroxidase (APX), and peroxidase (POD), polyphenol oxidase (PPO)) and upregulated the expression of stress-responsive genes: chlorophyll a-b binding protein of LHCII type 1-like (Lhcb1), ribulose bisphosphate carboxylase large chain-like (RbcL), cell wall invertase I (CWINV1), ornithine aminotransferase (OAT), and ethylene-responsive transcription factor 1 (ERF1), with the greatest upregulation observed at 50 mg/l SNPs. CONCLUSION: Overall, foliar application of sulfur nanofertilizers in agriculture could improve productivity while minimizing the deleterious effects of salt stress on plants. Therefore, this study provides a strong foundation for future research focused on evaluating the replacement of conventional sulfur-containing fertilizers with their nanoforms to reduce the harmful effects of salinity stress and enhance the productivity of faba beans.


Asunto(s)
Fertilizantes , Nanopartículas , Estrés Salino , Azufre , Vicia faba , Vicia faba/fisiología , Vicia faba/efectos de los fármacos , Vicia faba/crecimiento & desarrollo , Vicia faba/genética , Azufre/metabolismo , Antioxidantes/metabolismo , Hojas de la Planta/efectos de los fármacos , Fotosíntesis/efectos de los fármacos
3.
BMC Plant Biol ; 24(1): 225, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38539110

RESUMEN

BACKGROUND: Plants are considered the primary source of many principal bioactive compounds that have been utilized in a wide range of applications including the pharmaceutical and biotechnological industries. Therefore, there is an imperative need to modulate the production of natural bioactive components. The present study aimed to determine the importance of dried and pulverized date palm seeds (DPS) as a natural elicitor for the synthesis of secondary metabolites in Lotus arabicus L. RESULTS: The presence of various antioxidant compounds, simple sugars, amino acids, fatty acids and reasonable mineral contents was distinct in the phytochemical characterization of DPS. The major components detected in DPS analysis were the 5-(hydroxymethyl) furfural and 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyranone. The induced callus of L. arabicus (seven weeks old) was supplemented with DPS at different concentrations (0, 2, 4, 8 and 10 g/l) in culture media. Treatment with 8 g/l DPS induced the highest antioxidant capacity, ascorbic acid content and secondary metabolites (total phenolics and flavonoids) in the produced callus. Stress biomarkers (hydrogen peroxide and malondialdehyde) were found in the control ranges except at 10 g/l DPS. The expression patterns of key genes involoved in secondary metabolism modulation, such as phenylalanine ammonia lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), flavonol synthase (FLS) and deoxyxylulose phosphate reductoisomerase (DXR), were triggered after DPS treatments. Moreover, the quantitative profiling of phenolic and flavonoid compounds showed that supplementation with DPS, especially at 8 g/l, led to pronounced increases in most of the measured compounds. CONCLUSION: The marked upregulation of eliciting-responsive genes and overproduction of secondary metabolites provide molecular-based evidence for intensifying the principal pathways of phenylpropanoid, flavonoid and terpenoid biosynthesis. Overall, the present in vitro study highlights the stimulating capacity of DPS utilization to improve the bioactive components of L. arabicus at the physiological and molecular levels, enhancing its potential as a medicinal herb.


Asunto(s)
Lotus , Phoeniceae , Antioxidantes/metabolismo , Lotus/metabolismo , Phoeniceae/metabolismo , Polvos , Flavonoides/metabolismo , Fenoles/metabolismo , Semillas/metabolismo
4.
Rheumatol Int ; 43(4): 667-676, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36617362

RESUMEN

To depict the spectrum of rheumatoid arthritis (RA) in Egypt in relation to other universal studies to provide broad-based characteristics to this particular population. This work included 10,364 adult RA patients from 26 specialized Egyptian rheumatology centers representing 22 major cities all over the country. The demographic and clinical features as well as therapeutic data were assessed. The mean age of the patients was 44.8 ± 11.7 years, disease duration 6.4 ± 6 years, and age at onset 38.4 ± 11.6 years; 209 (2%) were juvenile-onset. They were 8750 females and 1614 males (F:M 5.4:1). 8% were diabetic and 11.5% hypertensive. Their disease activity score (DAS28) was 4.4 ± 1.4 and health assessment questionnaire (HAQ) 0.95 ± 0.64. The rheumatoid factor (RF) and anti-cyclic citrullinated peptide (anti-CCP) were positive in 73.7% and 66.7% respectively. Methotrexate was the most used treatment (78%) followed by hydroxychloroquine (73.7%) and steroids (71.3%). Biologic therapy was received by 11.6% with a significantly higher frequency by males vs females (15.7% vs 10.9%, p = 0.001). The least age at onset, F:M, RF and anti-CCP positivity were present in Upper Egypt (p < 0.0001), while the highest DAS28 was reported in Canal cities and Sinai (p < 0.0001). The HAQ was significantly increased in Upper Egypt with the least disability in Canal cities and Sinai (p = 0.001). Biologic therapy intake was higher in Lower Egypt followed by the Capital (p < 0.0001). The spectrum of RA phenotype in Egypt is variable across the country with an increasing shift in the F:M ratio. The age at onset was lower than in other countries.


Asunto(s)
Artritis Reumatoide , Reumatología , Masculino , Femenino , Humanos , Egipto/epidemiología , Anticuerpos Antiproteína Citrulinada , Artritis Reumatoide/diagnóstico , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/epidemiología , Factor Reumatoide , Autoanticuerpos , Péptidos Cíclicos/uso terapéutico
5.
Rheumatol Int ; 40(10): 1599-1611, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32710198

RESUMEN

The aim of this work is to trace how rheumatologists all over Egypt are approaching the COVID-19 pandemic and what changes it has brought about in the patients' care with special attention to its effect on vulnerable rheumatic disease (RD) patients. This survey further aims to help inform the rheumatology community about the changes in practice during the COVID-19 pandemic. The survey included 26 questions distributed to University staff members across Egypt members of the Egyptian College of Rheumatology (ECR). It takes 5-10 min to fill out. The practice setting of participating rheumatologists included University Teaching Hospitals that are the main rheumatology and clinical immunology service providers for adults and children RD patients. There was an overall agreement across the country in the responses to the survey that took a median time of 7 min to fill in. Potential changes in rheumatology outpatient practice by staff members evolved since the COVID-19 pandemic. None of the university rheumatology staff members has prescribed chloroquine or HCQ to prevent or treat COVID-19 in a non-hospitalized patient who was not previously on it. Twenty-three recommended decrease/avoid NSAIDs if the RD patient had confirmed COVID-19 or symptoms. There is an agreement to the key emerging frontline role of rheumatologists in treating COVID-19. During the pandemic, RD cases requiring admission were dealt with by several modified strategies. The overall agreement among the different university rheumatology departments during such critical situation has provoked the ECR to consider providing provisional guidelines for dealing with RD patients during this global catastrophe.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Antirreumáticos/uso terapéutico , Infecciones por Coronavirus/epidemiología , Neumonía Viral/epidemiología , Pautas de la Práctica en Medicina/estadística & datos numéricos , Enfermedades Reumáticas/tratamiento farmacológico , Reumatólogos/estadística & datos numéricos , Atención Ambulatoria/estadística & datos numéricos , Antirreumáticos/provisión & distribución , Betacoronavirus , COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/prevención & control , Deprescripciones , Egipto/epidemiología , Humanos , Hidroxicloroquina/provisión & distribución , Hidroxicloroquina/uso terapéutico , Pandemias/prevención & control , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/prevención & control , Reumatología , SARS-CoV-2 , Encuestas y Cuestionarios , Tratamiento Farmacológico de COVID-19
6.
J Surg Res ; 204(1): 183-91, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27451885

RESUMEN

BACKGROUND: Renal ischemia/reperfusion (I/R) is a major clinical problem. Its pathogenesis is multifactorial involving oxidative stress, cytokine overproduction, and inflammatory responses in the kidney and remote organs. This study was performed to evaluate the effects of celecoxib (CEB) and pentoxifylline (PTX) on kidney and liver changes after renal I/R in rats. MATERIALS AND METHODS: Renal ischemia was induced by clamping renal pedicles for 1 h followed by reperfusion for another 1 h. The rats were assigned to five groups: sham control, untreated I/R, CEB + I/R, PTX + I/R, and (CEB + PTX)+I/R. Drug treatment was given for 7 d before I/R. Serum and tissue biochemical and histomorphologic changes were evaluated after reperfusion. RESULTS: Renal I/R caused changes in kidney and liver histology with a significant reduction in the function of both organs. An increase in tumor necrosis factor-alpha, myeloperoxidase, and malondialdehyde levels with a decrease in glutathione content and superoxide dismutase activity was observed in kidney and liver tissues. Pretreatment with CEB, PTX, or CEB + PTX attenuated all these changes and the extent of improvement was similar in all drug-treated groups. CONCLUSIONS: This study is the first experimental work demonstrating the simultaneous nephroprotective and hepatoprotective effects of CEB and PTX after renal I/R. It seems likely that both drugs protect the kidney and liver by reducing oxidative stress, attenuating tumor necrosis factor-alpha production and inhibiting neutrophil tissue infiltration. No additive protective effects were observed in rats received the combined treatment. Thus, our results may imply a promising therapeutic approach by using CEB or PTX to protect the kidney and liver against the hazardous consequences of renal I/R.


Asunto(s)
Celecoxib/uso terapéutico , Enfermedades Renales/prevención & control , Pentoxifilina/uso terapéutico , Sustancias Protectoras/uso terapéutico , Daño por Reperfusión/prevención & control , Animales , Biomarcadores/metabolismo , Celecoxib/farmacología , Esquema de Medicación , Quimioterapia Combinada , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Infiltración Neutrófila/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Pentoxifilina/farmacología , Sustancias Protectoras/farmacología , Ratas , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Resultado del Tratamiento , Factor de Necrosis Tumoral alfa/metabolismo
7.
Sci Rep ; 14(1): 11100, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750032

RESUMEN

The growth and productivity of crop plants are negatively affected by salinity-induced ionic and oxidative stresses. This study aimed to provide insight into the interaction of NaCl-induced salinity with Azolla aqueous extract (AAE) regarding growth, antioxidant balance, and stress-responsive genes expression in wheat seedlings. In a pot experiment, wheat kernels were primed for 21 h with either deionized water or 0.1% AAE. Water-primed seedlings received either tap water, 250 mM NaCl, AAE spray, or AAE spray + NaCl. The AAE-primed seedlings received either tap water or 250 mM NaCl. Salinity lowered growth rate, chlorophyll level, and protein and amino acids pool. However, carotenoids, stress indicators (EL, MDA, and H2O2), osmomodulators (sugars, and proline), antioxidant enzymes (CAT, POD, APX, and PPO), and the expression of some stress-responsive genes (POD, PPO and PAL, PCS, and TLP) were significantly increased. However, administering AAE contributed to increased growth, balanced leaf pigments and assimilation efficacy, diminished stress indicators, rebalanced osmomodulators and antioxidant enzymes, and down-regulation of stress-induced genes in NaCl-stressed plants, with priming surpassing spray in most cases. In conclusion, AAE can be used as a green approach for sustaining regular growth and metabolism and remodelling the physio-chemical status of wheat seedlings thriving in salt-affected soils.


Asunto(s)
Antioxidantes , Regulación de la Expresión Génica de las Plantas , Extractos Vegetales , Tolerancia a la Sal , Plantones , Triticum , Triticum/efectos de los fármacos , Triticum/genética , Triticum/metabolismo , Triticum/crecimiento & desarrollo , Tolerancia a la Sal/genética , Tolerancia a la Sal/efectos de los fármacos , Antioxidantes/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/genética , Plantones/metabolismo , Extractos Vegetales/farmacología , Helechos/efectos de los fármacos , Helechos/genética , Helechos/metabolismo , Estrés Fisiológico/efectos de los fármacos , Salinidad , Cloruro de Sodio/farmacología , Estrés Oxidativo/efectos de los fármacos
8.
Plants (Basel) ; 13(12)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38931028

RESUMEN

Salinity stress poses a significant threat to crop productivity worldwide, necessitating effective mitigation strategies. This study investigated the phytochemical composition and potential of grape seed extract (GSE) to mitigate salinity stress effects on faba bean plants. GC-MS analysis revealed several bioactive components in GSE, predominantly fatty acids. GSE was rich in essential nutrients and possessed a high antioxidant capacity. After 14 days of germination, GSE was applied as a foliar spray at different concentrations (0, 2, 4, 6, and 8 g/L) to mitigate the negative effects of salt stress (150 mM NaCl) on faba bean plants. Foliar application of 2-8 g/L GSE significantly enhanced growth parameters such as shoot length, root length, fresh weight, and dry weight of salt-stressed bean plants compared to the control. The Fv/Fm ratio, indicating photosynthetic activity, also improved with GSE treatment under salinity stress compared to the control. GSE effectively alleviated the oxidative stress induced by salinity, reducing malondialdehyde, hydrogen peroxide, praline, and glycine betaine levels. Total soluble proteins, amino acids, and sugars were enhanced in GSE-treated, salt-stressed plants. GSE treatment under salinity stress modulated the total antioxidant capacity, antioxidant responses, and enzyme activities such as peroxidase, ascorbate peroxidase, and polyphenol oxidase compared to salt-stressed plants. Gene expression analysis revealed GSE (6 g/L) upregulated photosynthesis (chlorophyll a/b-binding protein of LHCII type 1-like (Lhcb1) and ribulose bisphosphate carboxylase large chain-like (RbcL)) and carbohydrate metabolism (cell wall invertase I (CWINV1) genes) while downregulating stress response genes (ornithine aminotransferase (OAT) and ethylene-responsive transcription factor 1 (ERF1)) in salt-stressed bean plants. The study demonstrates GSE's usefulness in mitigating salinity stress effects on bean plants by modulating growth, physiology, and gene expression patterns, highlighting its potential as a natural approach to enhance salt tolerance.

9.
J Genet Eng Biotechnol ; 21(1): 52, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37126122

RESUMEN

BACKGROUND: Zinc oxide nanoparticles (ZnO NPs) can be considered as nanofertilizer providing zinc as an essential micronutrient for plant growth and production at specific safe dose, however, above this dose; ZnO NPs induce oxidative stress. The present research aimed to evaluate some physiological and molecular effects of ZnO NPs on Trigonella foenum-graecum (fenugreek) plant. RESULTS: The ZnO NPs were applied at five different concentrations (10, 20, 30, 40, and 50 mg/l) via soaking fenugreek seeds for 24 h. Fenugreek seedlings were harvested after 14 days for biomass and biochemical analyses. The results revealed that increasing ZnO NPs concentration led to a significant increase in all measured parameters until peaked at 30 mg/l; after that, a decline trend was detected. However, malondialdehyde (MDA) increased significantly just at higher concentrations of ZnO NPs (40 and 50 mg/l). In addition, genetic variation measure using start codon targeted (SCoT) markers revealed that ZnO NP treatments exhibited limited genetic variation. CONCLUSION: Results showed that treatment with ZnO NPs at 30 mg/l can improve biomass, bioactive compounds, and antioxidant activity of fenugreek seedlings, besides being safe for DNA. So, this concentration could be a decent nanofertilizer for fenugreek plant.

10.
Life Sci ; 329: 121979, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37516431

RESUMEN

AIMS: Skeletal muscle ischemia and reperfusion (S-I/R) injury is relieved by interventions like remote ischemic preconditioning (RIPC). Here, we tested the hypothesis that simultaneous exposure to a minimal dose of erythropoietin (EPO) boosts the protection conferred by RIPC against S-I/R injury and concomitant mitochondrial oxidative and apoptotic defects. MAIN METHODS: S-I/R injury was induced in rats by 3-h right hindlimb ischemia followed by 3-h of reperfusion, whereas RIPC involved 3 brief consecutive I/R cycles of the contralateral hindlimb. KEY FINDINGS: S-I/R injury caused (i) rises in serum lactate dehydrogenase and creatine kinase and falls in serum pyruvate, (ii) structural deformities like sarcoplasm vacuolations, segmental necrosis, and inflammatory cells infiltration, and (iii) decreased amplitude and increased duration of electromyography action potentials. These defects were partially ameliorated by RIPC and dose-dependently by EPO (500 or 5000 IU/kg). Further, greater repairs of S-I/R-evoked damages were seen after prior exposure to the combined RIPC/EPO-500 intervention. The latter also caused more effective (i) preservation of mitochondrial number (confocal microscopy assessed Mitotracker red staining) and function (citrate synthase activity), (ii) suppression of mitochondrial DNA damage and indices of oxidative stress and apoptosis (succinate dehydrogenase, myeloperoxidase, cardiolipin, and cytochrome c), (iii) preventing calcium and nitric oxide metabolites (NOx) accumulation and glycogen consumption, and (iv) upregulating EPO receptors (EPO-R) gene expression. SIGNIFICANCE: dual RIPC/EPO conditioning exceptionally mends structural, functional, and neuronal deficits caused by I/R injury and interrelated mitochondrial oxidative and apoptotic damage. Clinically, the utilization of relatively low EPO doses could minimize the hormone-related adverse effects.


Asunto(s)
Eritropoyetina , Precondicionamiento Isquémico , Daño por Reperfusión , Ratas , Animales , Isquemia/metabolismo , Daño por Reperfusión/prevención & control , Daño por Reperfusión/metabolismo , Eritropoyetina/metabolismo , Músculo Esquelético/metabolismo
11.
J Ethnopharmacol ; 300: 115750, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36162547

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Different Physalis plants have been widely employed in traditional medicine for management of diabetes mellitus. Previous studies with respect to the in vivo antidiabetic activity of Physalis plants illustrated that they improved glucose and lipid metabolism in streptozotocin (STZ) -induced diabetic rats yet the mechanism of action of bioactive constituents of the different organs of Physalis plants on diabetes remains obscure. AIM OF STUDY: Our objective is to study the effects of the different organs of ground cherry (P. pruinosa) on diabetes in rat models and elucidate their mechanism of actions through serum pharmacochemistry combined to network pharmacology analyses and in-vivo testing. MATERIALS AND METHODS: Characterization of the constituents in the drug-dosed serum samples relative to the blank serum after treatment with different extracts was performed by UPLC -MS/MS technique. The absorbed metabolites where then subjected to network pharmacology analysis to construct an interaction network linking "compound-target-pathway". In vivo verification was implemented to determine a hypothesized mechanism of action on a STZ and high fat diet induced type II diabetes mellitus (T2DM) model based on functional and enrichment analyses of the Kyoto Encyclopedia of Genes and Genome and Gene Ontology. RESULTS: Identification of a total of 73 compounds (22 prototypes and 51 metabolites) derived from P. pruinosa extracts was achieved through comparison of the serum samples collected from diabetic control group and extracts treated groups. The identified compounds were found to belong to different classes according to their structural type including withanolides, physalins and flavonoids. The absorbed compounds in the analyzed serum samples were considered as the potential bioactive components. The component-target network was found to have 23 nodes with 17 target genes including MAPK8, CYP1A1 and CYP1B1. Quercetin and withaferin A were found to possess the highest combined score in the C-T network. Integrated serum pharmacochemistry and network pharmacology analyses revealed the enrichment of leaves extract with the active constituents, which can be utilized in T2DM treatment. In the top KEGG pathways, lipid and atherosclerosis metabolic pathways in addition to T2DM pathways were found to be highly prioritized. The diabetic rats, which received leaves extract exhibited a substantial increment in GLUT2, INSR, IRS-1, PI3K-p85 and AKT-ser473 proteins by 105%, 142%, 109%, 81% and 73%, respectively relative to the untreated diabetic group. The immunoblotting performed for MAPK and ERK1/2 part of the inflammatory pathway studied in STZ induced diabetic rats revealed that leaves, calyces and stems extracts resulted in a substantial diminish in p38-MAPK, ERK 1/2, NF-κB, and TNF-α. Histopathological examination revealed that the hepatic histoarchitecture was substantially improved in the leaves, stems, and clayces-treated rats in comparison with untreated diabetic rats. Further, pancreatic injuries, which induced by STZ were dramatically altered by the treatment with P. pruinosa leaves, calyces and stems extracts. ß-cells in diabetic rats received leaves extract disclosed moderate insulin immunostaining with a notable increase in the mean insulin area%. CONCLUSIONS: The study in hand offers a comprehensive study to clarify the bioactive metabolites of the different organs of P. pruinosa. The basic pharmacological effects and underlying mechanism of actions in the management of STZ and high fat diet induced T2DM were specifically covered in this paper.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Physalis , Witanólidos , Animales , Citocromo P-450 CYP1A1 , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Hipoglucemiantes/análisis , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Insulina , FN-kappa B , Farmacología en Red , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quercetina/uso terapéutico , Ratas , Estreptozocina , Espectrometría de Masas en Tándem , Factor de Necrosis Tumoral alfa
12.
Eur J Pharmacol ; 925: 174978, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35500641

RESUMEN

Myocardial infarction (MI) is a global health care problem, which instigates irreversible cardiac tissue damage and sudden death, necessitating new prevention and management strategies. Hence, the cardioprotective effect of octreotide in MI was scrutinized by tackling the possible underlying trajectories involved. Isoproterenol (ISO)-induced acute MI model was adopted using ISO (85 mg/kg/day, S.C.) for 2 days. Rats in octreotide groups were pretreated with 20 or 40 µg/kg/day S.C. for 8 days and ISO was given on the 7th and 8th days. Octreotide showed a restoration of ECG changes, cardiac hemodynamics abnormalities, serum cardiac markers elevation (creatine kinase MB, troponin I, lactate dehydrogenase, and aspartate aminotransferase), and cardiac histoarchitecture abnormalities. In addition, octreotide pretreatment showed a significant increase in the cardiac and serum level of the diagnostic microRNA-133a. Octreotide attenuates oxidative stress indices (MDA, GSH, SOD, TAC, and HIF-1α), besides a better adjustment of NOX-1/-2/-4 expression and protein levels. Mitochondrial morphology and mtDNA copy number were preserved following the pre-treatment of Octreotide. The inflammatory pathway p38 MAPK/Erk-1/-2/p-STAT3/NF-κB pathway and the proinflammatory cytokines (TNF- α, IL-6, and IL- 1ß) were attenuated. The proapoptotic markers (cyt c, caspase-3/-9, and Bax) were also attenuated and the antiapoptotic Bcl2 marker was increased by the preadministration of octreotide. In almost all parameters, Octreotide 40 µg/kg/day was more prominent than its lower dose. Octreotide possesses dose-dependent cardioprotective properties via its antioxidant, anti-inflammatory, and anti-apoptotic capabilities.


Asunto(s)
Infarto del Miocardio , Octreótido , Animales , Biomarcadores/metabolismo , Isoproterenol/farmacología , Infarto del Miocardio/inducido químicamente , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Octreótido/farmacología , Octreótido/uso terapéutico , Biogénesis de Organelos , Estrés Oxidativo , Ratas , Factor de Necrosis Tumoral alfa/metabolismo
13.
J Genet Eng Biotechnol ; 20(1): 166, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36520239

RESUMEN

BACKGROUND: A useful technique for growing large amounts of plant material is in vitro propagation of important medicinal plants. The present investigation deals with the enhancement of secondary metabolite production via elicitation using gamma (γ)-radiation and phenylalanine (Phe) precursor feeding in callus cultures of Silybum marianum L. RESULTS: Seeds were exposed to two doses of γ-radiation (25 and 50 Gy) and the calli derived from stem explants  obtained from seedlings of these radiated seeds were treated with different concentrations of Phe. The biosynthesis of phenols and flavonoids was evaluated. It was found that callus cultures derived from explants of the seeds exposed to 25 Gy γ-radiation and treated with 4 mg/l Phe accumulated the maximum phenolic content (34.27±0.02 mg/g d.wt.), while the highest flavonoid content (9.56±0.12 mg/g d.wt.) was found in callus cultures derived from explants of seeds radiated with 25 Gy γ-radiation and subjected to 1 mg/l Phe. Similarly, HPLC quantification revealed that the production of flavonoids was highly accumulated (1343.06 µg/mg d.wt.) in callus cultures from explants of seeds  exposed to 25 Gy γ-radiation and grown at 1 mg/l Phe compared to the other treatments. In addition, a total of 11 important flavonoids have been determined in all callus cultures, except for acacetin-7-O-rutinoside, which was not found in the callus culture of the control. CONCLUSIONS: These findings suggest that γ-radiation combined with Phe can improve the metabolism of S. marianum L. and could be used to produce such valuable metabolites on a commercial scale.

14.
Heliyon ; 7(7): e07561, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34355083

RESUMEN

INTRODUCTION: Myocardial infarction (MI) is an ischemic life-threatening disease with exaggerated oxidative stress state that vigorously damages the cardiomyocyte membrane and subcellular structures, including the vital mitochondrial DNA (mtDNA). The mtDNA is responsible for the proper functionality of the mitochondria, which are abundant in cardiomyocytes due to their dynamic nature and energy production requirements. Furthermore, oxidative stress triggers an inflammatory cascade and eventual apoptosis, which exacerbates cardiac injuries and dysfunction. AIM: The present study used an isoproterenol (ISP)-induced MI rat model to investigate the role of the main active constituent of Nigella Sativa seeds, thymoquinone (TQ), in preserving the cardiac mtDNA content and ameliorating oxidative stress, inflammation, and apoptosis. METHODS: Rats in the (TQ + ISP) group were pre-treated with TQ (20 mg/kg/day) for 21 days before the MI induction using ISP (85 mg/kg/day). In addition, negative control and ISP groups were included in the study for comparison. A histopathological examination was performed and serum cardiac parameters (cTnI and LDH) were assessed. In addition, mtDNA content, oxidative stress parameters (MDA, GSH, SOD, GPx, and CAT), inflammatory mediators (IL-6, IL-1ß, and TNF-α), and apoptosis markers (BAX, Bcl2, and caspase-3) were detected. RESULTS: The results showed that pre- and co-treatment with TQ in the (TQ + ISP) group reversed the histoarchitecture changes, caused a significant decrease in serum cardiac markers, oxidative stress markers, inflammatory cytokines, the apoptosis process, and preserved the cardiac mtDNA content. CONCLUSION: TQ is a cardioprotective agent with an extended effect on preserving the cardiac mtDNA content, in addition to its powerful antioxidant, anti-inflammatory, and anti-apoptotic action.

15.
Naunyn Schmiedebergs Arch Pharmacol ; 394(8): 1787-1801, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34216225

RESUMEN

As rats develop myocardial infarction (MI) like lesions when injected with large doses of isoproterenol (ISO), this investigation was designed to evaluate the dose-dependent effects of thymoquinone (TQ) on ISO-induced myocardial injury in rats. Adult male rats were divided into negative control, TQ20 (20 mg/kg/day), TQ50 (50 mg/kg/day), ISO positive control, TQ20 + ISO, and TQ50 + ISO groups. In these rats, biochemical, immunobiochemical, and histopathological studies were carried out to evaluate myocardial oxidative stress, inflammation, apoptosis, fibrosis, and autophagy, and the changes in serum cardiac biomarkers. The results showed that TQ pretreatment in ISO-administered rats produced a dose-dependent significant reduction of the myocardial infarct size, markedly reduced the ISO-induced elevation in serum cardiac markers and demonstrated several other important findings related to the cardioprotective efficacy of TQ. First, this study is the first reported research work showing that TQ treatment could increase the myocardial reduced glutathione baseline level, adding an indirect antioxidant effect to its known direct free radical scavenging effect. Second, pretreatment with TQ significantly reduced the markers of myocardial oxidative stress, inflammation, fibrosis, and apoptosis. Third, TQ acted as an autophagy enhancer ameliorating myocardial cell damage and dysfunction. Thus, the morphological and biochemical changes associated with ISO-induced myocardial injury were ameliorated with TQ pretreatment. The extent of this improvement was significantly greater in the TQ50 + ISO group than in the TQ20 + ISO group. The present study, for the first time, demonstrates these dose-dependent effects of TQ in experimentally induced myocardial injury. These findings raise the possibility that TQ may serve as a promising prophylactic cardioprotective therapy for patients who are at risk of developing myocardial injury and against the progression of existent myocardial injury as in cases of MI.


Asunto(s)
Benzoquinonas/farmacología , Inflamación/tratamiento farmacológico , Infarto del Miocardio/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Animales , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Benzoquinonas/administración & dosificación , Cardiotónicos/administración & dosificación , Cardiotónicos/farmacología , Progresión de la Enfermedad , Relación Dosis-Respuesta a Droga , Fibrosis , Inflamación/patología , Isoproterenol , Masculino , Infarto del Miocardio/fisiopatología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA