Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 95(35): 13353-13360, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37615357

RESUMEN

The increasing prevalence of antimicrobial resistance has called for improved diagnostic testing of pathogenic bacteria. However, the development of rapid, cost-effective, and easy-to-use tests for bacterial infections remains a constant challenge. Here, we report a class of modular hydrogel membrane carriers incorporated with composite DNAzymes, which enable rapid and highly sensitive detection of pathogenic bacteria gene target analytes. We apply free radical polymerization to incorporate composite DNAzymes, consisting of an RNA substrate component and a DNAzyme component (e.g., 10-23 or 8-17 DNAzymes), into polyethylene glycol diacrylate polymer networks. Initiated by a nucleic acid target acting as an assembly facilitator, multicomponent DNAzymes are combined to cleave the RNA substrate component in the hydrogel carriers, which releases the DNAzyme component to cleave RNA reporter probes to generate fluorescence. We modulate the morphology, composition, and microporous structures of the DNAzyme carriers to achieve quantitative assay performance. We demonstrate a rapid and high-sensitivity detection of C. trachomatis gene target analytes as low as 50 fM in a short assay time of 25 min. The work represents a crucial step forward in the development of a generic, isothermal, and protein enzyme-free pathogenic bacteria testing platform technology.


Asunto(s)
ADN Catalítico , Hidrogeles , ARN , Membranas , Bioensayo
2.
Anal Methods ; 15(12): 1506-1516, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36847496

RESUMEN

Electrophoresis on textile fiber substrates provides a unique surface-accessible platform for the movement, separation and concentration of charged analytes. The method employs the inherently inbuilt capillary channels existing within textile structures, which can support electroosmotic and electrophoretic transport processes upon applying an electric field. Unlike confined microchannels in classical chip-based electrofluidic devices, the capillaries formed by the roughly oriented fibers within textile substrates can impact the reproducibility of the separation process. Here, we report an approach for precise experimental conditions affecting the electrophoretic separation of two tracer solutes, fluorescein (FL) and rhodamine B (Rh-B) on textile-based substrates. A Box-Behnken response surface design methodology has been used to optimise the experimental conditions and predict the separation resolution of a solute mixture using polyester braided structures. The magnitude of the electric field, sample concentration and sample volume are of primary importance to the separation performance of the electrophoretic devices. Here, we use a statistical approach to optimise these parameters to achieve rapid and efficient separation. While a higher potential was shown to be required to separate solute mixtures of increasing concentration and sample volume, this was counteracted by a reduced separation efficiency due to joule heating, which caused electrolyte evaporation on the unenclosed textile structure at electric fields above 175 V cm-1. Using the approach presented here, optimal experimental conditions can be predicted to limit joule heating and attain effective separation resolution without compromising the analysis time on simple and low-cost textile substrates.

3.
Lab Chip ; 21(20): 3979-3990, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34636814

RESUMEN

Point of care testing using micro-total-analysis systems (µTAS) is critical to emergent healthcare devices with rapid and robust responses. However, two major barriers to the success of this approach are the prohibitive cost of microchip fabrication and poor sensitivity due to small sample volumes in a microfluidic format. Here, we aimed to replace the complex microchip format with a low-cost textile substrate with inherently built microchannels using the fibers' spaces. Secondly, by integrating this textile-based microfluidics with electrophoresis and wireless bipolar electrochemistry, we can significantly improve solute detection by focusing and concentrating the analytes of interest. Herein, we demonstrated that an in situ metal electrode simply inserted inside the textile-based electrophoretic system can act as a wireless bipolar electrode (BPE) that generates localized electric field and pH gradients adjacent to the BPE and extended along the length of the textile construct. As a result, charged analytes were not only separated electrophoretically but also focused where their electrophoretic migration and counter flow (EOF) balances due to redox reactions proceeding at the BPE edges. The developed wireless redox focusing technique on textile constructs was shown to achieve a 242-fold enrichment of anionically charged solute over an extended time of 3000 s. These findings suggest a simple route that achieves separation and analyte focusing on low-cost surface-accessible inverted substrates, which is far simpler than the more complex ITP on conventional closed and inaccessible capillary channels.


Asunto(s)
Electroforesis Capilar , Microfluídica , Electroquímica , Electrodos , Textiles
4.
ACS Appl Mater Interfaces ; 12(40): 45618-45628, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-32910632

RESUMEN

Electrofluidics is the unique combination of electrophoresis and microfluidics, which has opened up broad opportunities for bioanalysis and multiplexed assay. These systems typically comprise inaccessible and fully enclosed microcapillary or microchannels, with limited sample loading capacities and no direct access to the solutes within. Here, we investigate the application of multiyarn textile assemblies which provides an open and surface accessible electrophoretic separation platform. Three-dimensional (3D) textile structures have been produced using conventional knitting and braiding techniques from a range of commercially available yarns. Capillary zone electrophoresis separation studies have been carried out on these substrates using fluorescent anionic (fluorescence, FL) and cationic (rhodamine-B, Rh-B) markers. The effects of different yarn surface chemistry, textile fabrication technique, and electrolyte ionic strength on the electrophoretic mobility of the test analytes have been studied. From the broad range of yarns investigated, polyester was shown to have the highest electrophoretic mobility for Rh-B (6 × 10-4 cm2 V-1 s-1) and for FL (4 × 10-4 cm2 V-1 s-1). The braiding approach, being simple and versatile, was found to be the most effective route to produce 3D textile-based structures and offered the potential for selective movement and targeted delivery to different channels. Composite braids made with yarns of differential surface chemistries further revealed a unique behavior of separation and parallel movement of oppositely charged ionic species. We also demonstrate the feasibility to apply isotachophoresis (ITP) on these braided textile substrates to rapidly focus dispersed FL sample bands. Here, we demonstrate the focusing of FL from a dispersed band into narrow band with a 400 times reduction in sample width over 90 s. Owing to the simplicity and reproducibility of the developed approach, textile-based inverted microfluidic applications are expected to enable opportunities in bioanalysis, proteomics, and rapid clinical diagnostics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA