Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 326(Pt B): 116800, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36442335

RESUMEN

Due to ongoing and projected climate change as well as increasing anthropogenic disturbances, the tropical deciduous forest has been experiencing a decline in its biomass and productivity. To mitigate this adverse effect, many tropical countries have adopted forest co-management engaging local communities. However, the effects of co-management on the resistance and resilience of forest ecosystems to extreme climatic events have rarely been tested. The present study investigates the effects of co-management on resistance and resilience to extreme climatic events in two major tropical deciduous forest protected areas of Bangladesh, namely Madhupur National Park (MNP) and Bhawal National Park (BNP), through remotely sensed satellite data. We used the Google Earth Engine platform to access the Landsat images from 1990 to 2020 for a comprehensive assessment of the forest cover condition under two major management regimes (i.e., traditional and co-management). We find that co-management slows down the rate of forest destruction, where the rate of forest destruction was 108 ha year-1 in MNP and 121 ha year-1 in BNP during the year 1990-2008 under traditional forest management system. Under the co-management regime, forest cover increased by 19 ha year-1 and 41 ha year-1 from 2009 to 2020 respectively in MNP and BNP. Our study finds a highly significant correlation between rainfall (p < 0.001) and forest health, although co-management had poor impacts on forest resistance and resilience in case of extreme climatic events, such as drought and heavy rainfall. We find, no significant impacts of co-management on resistance and resilience to drought in MNP, and on resistance and resilience to heavy rainfall in MNP and BNP. In BNP, the impacts of co-management on resistance (p < 0.05) and resilience (p < 0.01) of forest to drought were highly significant. Forest co-management although have the potentials to reduce the deforestation rate by mitigating anthropogenic disturbances, its capacity to tackle the adverse impact of climate change was limited in our study. An adaptive co-management model, therefore, is crucial for mainstreaming the adverse effect of climate change on the tropical deciduous forest to harness the maximum potential of community participation in forest resources management.


Asunto(s)
Ecosistema , Bosques , Bangladesh , Cambio Climático , Sequías , Árboles
2.
Glob Chang Biol ; 27(11): 2441-2457, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33675118

RESUMEN

Droughts can strongly affect grassland productivity and biodiversity, but responses differ widely. Nutrient availability may be a critical factor explaining this variation, but is often ignored in analyses of drought responses. Here, we used a standardized nutrient addition experiment covering 10 European grasslands to test if full-factorial nitrogen, phosphorus, and potassium addition affected plant community responses to inter-annual variation in drought stress and to the extreme summer drought of 2018 in Europe. We found that nutrient addition amplified detrimental drought effects on community aboveground biomass production. Drought effects also differed between functional groups, with a negative effect on graminoid but not forb biomass production. Our results imply that eutrophication in grasslands, which promotes dominance of drought-sensitive graminoids over forbs, amplifies detrimental drought effects. In terms of climate change adaptation, agricultural management would benefit from taking into account differential drought impacts on fertilized versus unfertilized grasslands, which differ in ecosystem services they provide to society.


Asunto(s)
Sequías , Pradera , Biodiversidad , Biomasa , Ecosistema , Europa (Continente)
3.
Glob Chang Biol ; 26(6): 3539-3551, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32011046

RESUMEN

Higher biodiversity can stabilize the productivity and functioning of grassland communities when subjected to extreme climatic events. The positive biodiversity-stability relationship emerges via increased resistance and/or recovery to these events. However, invader presence might disrupt this diversity-stability relationship by altering biotic interactions. Investigating such disruptions is important given that invasion by non-native species and extreme climatic events are expected to increase in the future due to anthropogenic pressure. Here we present one of the first multisite invader × biodiversity × drought manipulation experiment to examine combined effects of biodiversity and invasion on drought resistance and recovery at three semi-natural grassland sites across Europe. The stability of biomass production to an extreme drought manipulation (100% rainfall reduction; BE: 88 days, BG: 85 days, DE: 76 days) was quantified in field mesocosms with a richness gradient of 1, 3, and 6 species and three invasion treatments (no invader, Lupinus polyphyllus, Senecio inaequidens). Our results suggest that biodiversity stabilized community productivity by increasing the ability of native species to recover from extreme drought events. However, invader presence turned the positive and stabilizing effects of diversity on native species recovery into a neutral relationship. This effect was independent of the two invader's own capacity to recover from an extreme drought event. In summary, we found that invader presence may disrupt how native community interactions lead to stability of ecosystems in response to extreme climatic events. Consequently, the interaction of three global change drivers, climate extremes, diversity decline, and invasive species, may exacerbate their effects on ecosystem functioning.


Asunto(s)
Sequías , Ecosistema , Biodiversidad , Cambio Climático , Europa (Continente) , Pradera
4.
FASEB J ; 33(12): 13602-13616, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31577450

RESUMEN

Pulmonary immunosuppression often occurs after burn injury (BI). However, the reasons for BI-induced pulmonary immunosuppression are not clearly understood. Neutrophil recruitment and neutrophil extracellular trap (NET) formation (NETosis) are important components of a robust pulmonary immune response, and we hypothesized that pulmonary inflammation and NETosis are defective after BI. To test this hypothesis, we established a mouse model with intranasal LPS instillation in the presence or absence of BI (15% of body surface burn) and determined the degree of immune cell infiltration, NETosis, and the cytokine levels in the airways and blood on d 2. Presence of LPS recruited monocytes and large numbers of neutrophils to the airways and induced NETosis (citrullinated histone H3, DNA, myeloperoxidase). By contrast, BI significantly reduced LPS-mediated leukocyte recruitment and NETosis. This BI-induced immunosuppression is attributable to the reduction of chemokine (C-C motif) ligand (CCL) 2 (monocyte chemoattractant protein 1) and CCL3 (macrophage inflammatory protein 1α). BI also suppressed LPS-induced increase in IL-17A, IL-17C, and IL-17E/IL-25 levels in the airways. Therefore, BI-mediated reduction in leukocyte recruitment and NETosis in the lungs are attributable to these cytokines. Regulating the levels of some of these key cytokines represents a potential therapeutic option for mitigating BI-mediated pulmonary immunosuppression.-Sakuma, M., Khan, M. A. S., Yasuhara, S., Martyn, J. A., Palaniyar, N. Mechanism of pulmonary immunosuppression: extrapulmonary burn injury suppresses bacterial endotoxin-induced pulmonary neutrophil recruitment and neutrophil extracellular trap (NET) formation.


Asunto(s)
Quemaduras/fisiopatología , Trampas Extracelulares/inmunología , Terapia de Inmunosupresión , Lipopolisacáridos/toxicidad , Infiltración Neutrófila/inmunología , Neutrófilos/inmunología , Neumonía/inmunología , Animales , Trampas Extracelulares/metabolismo , Ratones , Neutrófilos/metabolismo , Neutrófilos/patología , Neumonía/inducido químicamente , Neumonía/metabolismo , Neumonía/patología
5.
Pflugers Arch ; 470(11): 1647-1657, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30006848

RESUMEN

Muscle changes of critical illness are attributed to systemic inflammatory responses and disuse atrophy. GTS-21 (3-(2,4-dimethoxy-benzylidene)anabaseine), also known as DMBX-A) is a synthetic derivative of the natural product anabaseine that acts as an agonist at α7-acetylcholine receptors (α7nAChRs). Hypothesis tested was that modulation of inflammation by agonist GTS-21 (10 mg/kg b.i.d. intraperitoneally) will attenuate body weight (BW) and muscle changes. Systemic sham inflammation was produced in 125 rats by Cornyebacterium parvum (C.p.) or saline injection on days 0/4/8. Seventy-four rats had one immobilized-limb producing disuse atrophy. GTS-21 effects on BW, tibialis muscle mass (TMM), and function were assessed on day 12. Systemically, methemoglobin levels increased 26-fold with C.p. (p < 0.001) and decreased significantly (p < 0.033) with GTS-21. Control BW increased (+ 30 ± 9 g, mean ± SD) at day 12, but decreased with C.p. and superimposed disuse (p = 0.005). GTS-21 attenuated BW loss in C.p. (p = 0.005). Compared to controls, TMM decreased with C.p. (0.43 ± 0.06 g to 0.26 ± 0.03 g) and with superimposed disuse (0.18 ± 0.04 g); GTS-21 ameliorated TMM loss to 0.32 ± 0.04 (no disuse, p = 0.028) and to 0.22 ± 0.03 (with disuse, p = 0.004). Tetanic tensions decreased with C.p. or disuse and GTS-21 attenuated tension decrease in animals with disuse (p = 0.006) and in animals with C.p. and disuse (p = 0.029). C.p.-induced 11-fold increased muscle α7nAChR expression was decreased by > 60% with GTS-21 treatment. In conclusion, GTS-21 modulates systemic inflammation, evidenced by both decreased methemoglobin levels and decrease of α7nAChR expression, and mitigates inflammation-mediated loss of BW, TMM, fiber size, and function.


Asunto(s)
Compuestos de Bencilideno/uso terapéutico , Músculo Esquelético/efectos de los fármacos , Atrofia Muscular/tratamiento farmacológico , Agonistas Nicotínicos/uso terapéutico , Piridinas/uso terapéutico , Síndrome de Respuesta Inflamatoria Sistémica/tratamiento farmacológico , Animales , Compuestos de Bencilideno/farmacología , Peso Corporal , Infecciones por Corynebacterium/complicaciones , Inmovilización/efectos adversos , Masculino , Metahemoglobina/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/etiología , Agonistas Nicotínicos/farmacología , Piridinas/farmacología , Ratas , Ratas Sprague-Dawley , Síndrome de Respuesta Inflamatoria Sistémica/etiología , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
6.
Ecol Lett ; 20(11): 1405-1413, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28941071

RESUMEN

Biodiversity can buffer ecosystem functioning against extreme climatic events, but few experiments have explicitly tested this. Here, we present the first multisite biodiversity × drought manipulation experiment to examine drought resistance and recovery at five temperate and Mediterranean grassland sites. Aboveground biomass production declined by 30% due to experimental drought (standardised local extremity by rainfall exclusion for 72-98 consecutive days). Species richness did not affect resistance but promoted recovery. Recovery was only positively affected by species richness in low-productive communities, with most diverse communities even showing overcompensation. This positive diversity effect could be linked to asynchrony of species responses. Our results suggest that a more context-dependent view considering the nature of the climatic disturbance as well as the productivity of the studied system will help identify under which circumstances biodiversity promotes drought resistance or recovery. Stability of biomass production can generally be expected to decrease with biodiversity loss and climate change.


Asunto(s)
Biodiversidad , Sequías , Ecosistema , Pradera , Biomasa , Cambio Climático , Fenómenos Fisiológicos de las Plantas , Especificidad de la Especie
7.
Glob Chang Biol ; 22(1): 449-64, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26426898

RESUMEN

Within-species and among-species differences in growth responses to a changing climate have been well documented, yet the relative magnitude of within-species vs. among-species variation has remained largely unexplored. This missing comparison impedes our ability to make general predictions of biodiversity change and to project future species distributions using models. We present a direct comparison of among- versus within-species variation in response to three of the main stresses anticipated with climate change: drought, warming, and frost. Two earlier experiments had experimentally induced (i) summer drought and (ii) spring frost for four common European grass species and their ecotypes from across Europe. To supplement existing data, a third experiment was carried out, to compare variation among species from different functional groups to within-species variation. Here, we simulated (iii) winter warming plus frost for four grasses, two nonleguminous, and two leguminous forbs, in addition to eleven European ecotypes of the widespread grass Arrhenatherum elatius. For each experiment, we measured: (i) C/N ratio and biomass, (ii) chlorophyll content and biomass, and (iii) plant greenness, root (15) N uptake, and live and dead tissue mass. Using coefficients of variation (CVs) for each experiment and response parameter, a total of 156 within- vs. among-species comparisons were conducted, comparing within-species variation in each of four species with among-species variation for each seed origin (five countries). Of the six significant differences, within-species CVs were higher than among-species CVs in four cases. Partitioning of variance within each treatment in two of the three experiments showed that within-species variability (ecotypes) could explain an additional 9% of response variation after accounting for the among-species variation. Our observation that within-species variation was generally as high as among-species variation emphasizes the importance of including both within- and among-species variability in ecological theory (e.g., the insurance hypothesis) and for practical applications (e.g., biodiversity conservation).


Asunto(s)
Ecotipo , Desarrollo de la Planta/fisiología , Plantas/genética , Temperatura , Adaptación Fisiológica , Biodiversidad , Biomasa , Carbono/análisis , Clorofila/análisis , Cambio Climático , Sequías , Variación Genética , Nitrógeno/análisis , Raíces de Plantas/metabolismo
8.
Anesthesiology ; 120(1): 76-85, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24126263

RESUMEN

BACKGROUND: Mature acetylcholine receptor (AChR) isoform normally mediates muscle contraction. The hypothesis that α7AChRs up-regulate during immobilization and contribute to neurotransmission was tested pharmacologically using specific blockers to mature (waglerin-1), immature (αA-OIVA), and α7AChRs (methyllycaconitine), and nonspecific muscle AChR antagonist, α-bungarotoxin. METHODS: Mice were immobilized; contralateral limbs were controls. Fourteen days later, anesthetized mice were mechanically ventilated. Nerve-stimulated tibialis muscle contractions on both sides were recorded, and blockers enumerated above sequentially administered via jugular vein. Data are mean ± standard error. RESULTS: Immobilization (N = 7) induced tibialis muscle atrophy (40.6 ± 2.8 vs. 52.1 ± 2.0 mg; P < 0.01) and decrease of twitch tension (34.8 ± 1.1 vs. 42.9 ± 1.5 g; P < 0.01). Waglerin-1 (0.3 ± 0.05 µg/g) significantly (P = 0.001; N = 9) depressed twitch tension on contralateral (≥97%) versus immobilized side (approximately 45%). Additional waglerin-1 (total dose 1.06 ± 0.12 µg/g or approximately 15.0 × ED50 in normals) could not depress twitch of 80% or greater on immobilized side. Immature AChR blocker, αA-OIVA (17.0 ± 0.25 µg/g) did not change tension bilaterally. Administration of α-bungarotoxin (N = 4) or methyllycaconitine (N = 3) caused 96% or greater suppression of the remaining twitch tension on immobilized side. Methyllycaconitine, administered first (N = 3), caused equipotent inhibition by waglerin-1 on both sides. Protein expression of α7AChRs was significantly (N = 3; P < 0.01) increased on the immobilized side. CONCLUSIONS: Ineffectiveness of waglerin-1 suggests that the twitch tension during immobilization is maintained by receptors other than mature AChRs. Because αA-OIVA caused no neuromuscular changes, it can be concluded that immature AChRs contribute minimally to neurotransmission. During immobilization approximately 20% of twitch tension is maintained by up-regulation of α-bungarotoxin- and methyllycaconitine-sensitive α7AChRs.


Asunto(s)
Inmovilización/efectos adversos , Músculo Esquelético/inervación , Músculo Esquelético/metabolismo , Transmisión Sináptica/fisiología , Receptor Nicotínico de Acetilcolina alfa 7/biosíntesis , Animales , Atrofia , Western Blotting , Bungarotoxinas/farmacología , Conotoxinas/farmacología , Venenos de Crotálidos/farmacología , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Contracción Muscular/fisiología , Músculo Esquelético/patología , Miografía , Unión Neuromuscular/efectos de los fármacos , Péptidos Cíclicos/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/efectos de los fármacos
9.
Can J Physiol Pharmacol ; 92(1): 1-8, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24383867

RESUMEN

Previous models of muscle disuse have invariably used surgical methods that require the repetitive application of plaster casts. A method of disuse atrophy that does not require such repetitive applications is described herein. Modified plastic pipette tubing was applied to a single hindlimb (mouse), from thigh to foot, resulting in immobilization of the knee in the extension position, and the ankle in the plantar flexion position. This method resulted in the loss of soleus muscle to 11%, 22%, 39%, and 45% of its original mass at 3, 7, 14, and 21 days, respectively, in association with a significant decrease of tibialis twitch (25%) and tetanic tensions (26%) at 21 days, compared with the contralateral side and (or) sham-immobilized controls. Immunohistochemical analysis of the soleus using fluorescent α-bungarotoxin revealed a significant increase in the number of synapses per unit area (818 + 31 compared with 433 + 16/mm(2)) and an increase in muscle fibers per unit area (117 compared with 83/mm(2)), most likely related to the atrophy of muscle fibers bringing synapses closer. A 3-fold increase in alpha7 acetylcholine receptor (α7AChR) protein expression, along with increased expression of α1AChR subunit in the immobilized side compared with the contralateral side was observed. The physiology and pharmacology of the novel finding of upregulation of α7AChRs with disuse requires further study.


Asunto(s)
Modelos Animales de Enfermedad , Músculo Esquelético/fisiopatología , Trastornos Musculares Atróficos/fisiopatología , Distrofia Muscular Animal/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Inmovilización , Masculino , Ratones Endogámicos C57BL , Fibras Musculares de Contracción Rápida/fisiología , Fibras Musculares de Contracción Lenta/fisiología , Músculo Esquelético/metabolismo , Trastornos Musculares Atróficos/metabolismo , Distrofia Muscular Animal/fisiopatología , Regulación hacia Arriba , Receptor Nicotínico de Acetilcolina alfa 7/genética
10.
Muscle Nerve ; 47(5): 711-21, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23401051

RESUMEN

INTRODUCTION: Immobilization by casting induces disuse muscle atrophy (DMA). METHODS: Using wild type (WT) and caspase-3 knockout (KO) mice, we evaluated the effect of caspase-3 on muscle mass, apoptosis, and inflammation during DMA. RESULTS: Caspase-3 deficiency significantly attenuated muscle mass decrease [gastrocnemius: 28 ± 1% in KO vs. 41 ± 3% in WT; soleus: 47 ± 2% in KO vs. 56 ± 2% in WT; (P < 0.05)] and gastrocnemius twitch tension decrease (23 ± 4% in KO vs. 36 ± 3% in WT, P < 0.05) at day 14 in immobilized vs. contralateral hindlimb. Lack of caspase-3 decreased immobilization-induced increased apoptotic myonuclei (3.2-fold) and macrophage infiltration (2.2-fold) in soleus muscle and attenuated increased monocyte chemoattractant protein-1 mRNA expression (2-fold in KO vs. 18-fold in WT) in gastrocnemius. CONCLUSIONS: Caspase-3 plays a key role in DMA and associated decreased tension, presumably by acting on the apoptosis and inflammation pathways.


Asunto(s)
Apoptosis/genética , Caspasa 3/metabolismo , Inflamación/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Animales , Caspasa 3/genética , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Inmovilización , Inflamación/genética , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/patología , Atrofia Muscular/genética , Atrofia Muscular/patología
11.
Cells ; 12(20)2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37887319

RESUMEN

Binge or chronic alcohol consumption causes neuroinflammation and leads to alcohol use disorder (AUD). AUD not only affects the central nervous system (CNS) but also leads to pathologies in the peripheral and enteric nervous systems (ENS). Thus, understanding the mechanism of the immune signaling to target the effector molecules in the signaling pathway is necessary to alleviate AUD. Growing evidence shows that excessive alcohol consumption can activate neuroimmune cells, including microglia, and change the status of neurotransmitters, affecting the neuroimmune system. Microglia, like peripheral macrophages, are an integral part of the immune defense and represent the reticuloendothelial system in the CNS. Microglia constantly survey the CNS to scavenge the neuronal debris. These cells also protect parenchymal cells in the brain and spinal cord by repairing nerve circuits to keep the nervous system healthy against infectious and stress-derived agents. In an activated state, they become highly dynamic and mobile and can modulate the levels of neurotransmitters in the CNS. In several ways, microglia, enteric glial cells, and macrophages are similar in terms of causing inflammation. Microglia also express most of the receptors that are constitutively present in macrophages. Several receptors on microglia respond to the inflammatory signals that arise from danger-associated molecular patterns (DAMPs), pathogen-associated molecular patterns (PAMPs), endotoxins (e.g., lipopolysaccharides), and stress-causing molecules (e.g., alcohol). Therefore, this review article presents the latest findings, describing the roles of microglia and enteric glial cells in the brain and gut, respectively, and their association with neurotransmitters, neurotrophic factors, and receptors under the influence of binge and chronic alcohol use, and AUD.


Asunto(s)
Eje Cerebro-Intestino , Microglía , Humanos , Microglía/metabolismo , Neuroglía/fisiología , Inflamación/metabolismo , Etanol/metabolismo , Neurotransmisores/metabolismo
12.
J Neuroimmune Pharmacol ; 17(1-2): 131-151, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34843074

RESUMEN

The human digestive tract contains a diverse and abundant microbiota that is important for health. Excessive alcohol use can disrupt the balance of these microbes (known as dysbiosis), leading to elevated blood endotoxin levels and systemic inflammation. Using QIAGEN Ingenuity Pathway Analysis (IPA) bioinformatics tool, we have confirmed that peripheral endotoxin (lipopolysaccharide) mediates various cytokines to enhance the neuroinflammation signaling pathway. The literature has identified alcohol-mediated neuroinflammation as a possible risk factor for the onset and progression of neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), and psychiatric disorders such as addiction to alcohol and other drugs. In this review, we discuss alcohol-use-induced dysbiosis in the gut and other body parts as a causal factor in the progression of Central Nervous System (CNS) diseases including neurodegenerative disease and possibly alcohol use disorder.


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/inducido químicamente , Sistema Nervioso Central
13.
Nat Commun ; 13(1): 4683, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050293

RESUMEN

Global patterns of regional (gamma) plant diversity are relatively well known, but whether these patterns hold for local communities, and the dependence on spatial grain, remain controversial. Using data on 170,272 georeferenced local plant assemblages, we created global maps of alpha diversity (local species richness) for vascular plants at three different spatial grains, for forests and non-forests. We show that alpha diversity is consistently high across grains in some regions (for example, Andean-Amazonian foothills), but regional 'scaling anomalies' (deviations from the positive correlation) exist elsewhere, particularly in Eurasian temperate forests with disproportionally higher fine-grained richness and many African tropical forests with disproportionally higher coarse-grained richness. The influence of different climatic, topographic and biogeographical variables on alpha diversity also varies across grains. Our multi-grain maps return a nuanced understanding of vascular plant biodiversity patterns that complements classic maps of biodiversity hotspots and will improve predictions of global change effects on biodiversity.


Asunto(s)
Biodiversidad , Tracheophyta , Ecosistema , Plantas
14.
Artículo en Inglés | MEDLINE | ID: mdl-20953381

RESUMEN

BACKGROUND: Bacterial flagellin triggers inflammation in mammalian cells via Toll-like receptor (TLR) 5. Release of the chemokine IL-8 in response to flagellin involves NF-κB, p38 MAP kinase, and phosphatidylinositol 3-kinase (PI3K). However, PI3K has been reported to be either pro- or anti-inflammatory in different model systems. We hypothesized that this could be due to different activities of the p110α and ß isoforms of PI3K. RESULTS: PI3K and Akt were rapidly activated in Caco-2 colon carcinoma cells by flagellin. Using a plasmid-based shRNA delivery system and novel p110 isoform-specific inhibitors, we found that flagellin-induced IL-8 production was dependent on both p110α and p110ß. However in the mouse, inhibition of p110ß but not p110α reduced the increase of serum IL-6 levels induced by intraperitoneal injection of flagellin. CONCLUSIONS: These data demonstrate that the p110α and ß isoforms of class IA PI3K are both required for the proinflammatory response to flagellin.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Células Epiteliales/citología , Receptor Toll-Like 5/metabolismo , Animales , Células CACO-2 , Humanos , Inflamación , Interleucina-6/sangre , Interleucina-8/sangre , Interleucina-8/metabolismo , Ratones , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas/metabolismo , Regiones Promotoras Genéticas , Isoformas de Proteínas
15.
Shock ; 51(5): 569-579, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30702509

RESUMEN

INTRODUCTION: Burn injury (BI) leads to both systemic and neuro-inflammation and is associated with muscle wasting and weakness, which increase morbidity and mortality. Disuse atrophy is concomitantly present in BI patients. Most studies have focused on muscle with little attention to role of central nervous system (CNS) in the neuromuscular changes. We tested the hypothesis that BI-induced muscle wasting stems from CNS microglia activation and cytokines and chemokine release, which is associated with spinal ventral horn motor neuron degeneration. METHODS: Body surface (35%) BI, immobilization alone (Immob), BI with immobilization (BI + Immob), or Sham BI were administered to mice. Spinal cord (L3-L4 segments) and skeletal muscle tissues were harvested on days 7 and 14 after perturbations to examine microglia, motor neuron, and skeletal muscle changes. RESULTS: BI and BI + Immob significantly (P < 0.05) activated microglia, evidenced by its increased density around motor neurons, upregulated neuroinflammation-marker, translocator protein 18 kDa expression and inflammatory cytokines (interleukin-1ß, tumor necrosis factor-α) and/or chemokines (CXCL2) expression at days 7 and 14. Ventral horn motor neurons apoptosis and downregulation were observed at both periods after BI and was significantly magnified by concomitant BI + Immob. BI and more prominently BI + Immob disintegrated and fragmented the pretzel-shaped synapse and was associated with significantly decreased gastrocnemius, tibialis, and soleus muscle masses. CONCLUSION: BI induces microglia proliferation and activation (cytokine and chemokine release), degeneration of ventral horn motor neurons and muscle mass loss, all of which were accentuated by concomitant immobilization. The mechanisms connecting microglia activation and motor neuron degeneration to muscle mass loss require further delineation.


Asunto(s)
Quemaduras/fisiopatología , Microglía/citología , Neuronas Motoras/patología , Atrofia Muscular/fisiopatología , Animales , Apoptosis , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/fisiopatología , Unión Neuromuscular/fisiopatología , Médula Espinal/fisiopatología
16.
Sci Rep ; 9(1): 14632, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601976

RESUMEN

Climate change affects all seasons, but warming is more pronounced in winter than summer at mid- and high latitudes. Winter warming can have profound ecological effects, which are rarely compared to the effects of summer warming, and causal explanations are not well established. We compared mild aboveground infrared warming in winter to warming in summer in a semi-natural, cool-temperate grassland in Germany for four years. Aboveground plant biomass increased following winter warming (+18%) and was unaffected by summer warming. Winter warming affected the composition of the plant community more than summer warming, favoring productive species. Winter warming increased soil respiration more than summer warming. Prolonged growing seasons and changes in plant-community composition accounted for the increased aboveground biomass production. Winter warming stimulated ecological processes, despite causing frost damage to plant roots and microorganisms during an extremely cold period when warming reduced the thermal insulation provided by snow. Future warming beyond such intermittent frosts may therefore further increase the accelerating effects of winter warming on ecological processes.

17.
Nat Ecol Evol ; 2(12): 1906-1917, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30455437

RESUMEN

Plant functional traits directly affect ecosystem functions. At the species level, trait combinations depend on trade-offs representing different ecological strategies, but at the community level trait combinations are expected to be decoupled from these trade-offs because different strategies can facilitate co-existence within communities. A key question is to what extent community-level trait composition is globally filtered and how well it is related to global versus local environmental drivers. Here, we perform a global, plot-level analysis of trait-environment relationships, using a database with more than 1.1 million vegetation plots and 26,632 plant species with trait information. Although we found a strong filtering of 17 functional traits, similar climate and soil conditions support communities differing greatly in mean trait values. The two main community trait axes that capture half of the global trait variation (plant stature and resource acquisitiveness) reflect the trade-offs at the species level but are weakly associated with climate and soil conditions at the global scale. Similarly, within-plot trait variation does not vary systematically with macro-environment. Our results indicate that, at fine spatial grain, macro-environmental drivers are much less important for functional trait composition than has been assumed from floristic analyses restricted to co-occurrence in large grid cells. Instead, trait combinations seem to be predominantly filtered by local-scale factors such as disturbance, fine-scale soil conditions, niche partitioning and biotic interactions.


Asunto(s)
Rasgos de la Historia de Vida , Dispersión de las Plantas , Plantas , Bosques , Pradera
18.
Shock ; 47(1): 61-69, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27529131

RESUMEN

INTRODUCTION: Muscle wasting (MW) in catabolic conditions (e.g., burn injury [BI]) is a major risk factor affecting prognosis. Activation of interleukin-1ß (IL-1ß)/nuclear factor-kappa B (NF-κB), interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3), and/or forkhead box O transcriptional factor (FOXO)-mediated gene transcription pathways is the pivotal trigger of inflammatory response-induced protein catabolic processes in muscle. The α7 acetylcholine receptors (α7AChRs) are upregulated in macrophages and peripheral tissues including skeletal muscle during MW conditions. Stimulation of α7AChRs mitigates inflammatory responses. Hypothesis tested is that attenuation of inflammation by α7AChR stimulation with specific α7AChR agonist, GTS-21, will reverse BI-induced body mass and MW by modulating inflammatory and proteolytic signals. METHODS: Body surface area (30%) BI or sham BI mice were treated with GTS-21 or saline. Tibialis anterior (TA) muscle was harvested at 6 h, day 1 or 3 to examine inflammatory and proteolytic signals. RESULTS: GTS-21 significantly ameliorated the BI-induced increased expression of inflammatory cytokines IL-6, IL-1ß, C-X-C motif chemokine ligand 2 (6 h), phosphorylated STAT3, and NF-κB (day 1) in TA muscle. GTS-21 also significantly inhibited BI-induced increase of MuRF1 and FOXO1 (day 1). Consistent with the cytokine and inflammatory mediator changes, BI-induced body weight and TA muscle mass loss at day 3 were mitigated by GTS-21 treatment. The beneficial effect of GTS-21 on BI changes was absent in methyllycaconitine (α7AChR antagonist)-treated wild-type and α7AChR knockout mice. CONCLUSION: GTS-21 stimulation of α7AChRs, by modulating multiple molecular signals related to inflammation and proteolysis, attenuates protein wasting, evidenced by maintenance of body weight and attenuation of distant muscle mass loss after BI. GTS-21 can be a novel, potent therapeutic option for reversal of BI-induced MW.


Asunto(s)
Compuestos de Bencilideno/uso terapéutico , Quemaduras/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/prevención & control , Atrofia Muscular/metabolismo , Atrofia Muscular/prevención & control , Piridinas/uso terapéutico , Receptor Nicotínico de Acetilcolina alfa 7/antagonistas & inhibidores , Animales , Quemaduras/complicaciones , Quemaduras/metabolismo , Immunoblotting , Inflamación/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Atrofia Muscular/etiología
19.
Shock ; 48(2): 227-235, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28282360

RESUMEN

The role of interleukin-6 (IL-6) in physiological processes and disease is poorly understood. The hypothesis tested in this study was that selective alpha7 acetylcholine receptor (α7AChR) agonist, GTS-21, releases IL-6 in association with myonuclear accretion and enhances insulin signaling in muscle cells, and improves survival of burn injured (BI) mice. The in vitro effects of GTS-21 were determined in C2C12 myoblasts and 7-day differentiated myotubes (myotubes). The in vivo effects of GTS-21 were tested in BI wild-type (WT) and IL-6 knockout (IL6KO) mice. GTS-21 dose-dependently (0 µM, 100 µM, and 200 µM) significantly increased IL-6 levels in myoblasts and myotubes at 6 and 9 h. GTS-21-induced IL-6 release in myotubes was attenuated by methyllycaconitine (α7AChR antagonist), and by Stat-3 or Stat-5 inhibitors. GTS-21 increased MyoD and Pax7 protein expression, myonuclear accretion, and insulin-induced phosphorylation of Akt, GSK-3ß, and Glut4 in myotubes. The glucose levels of burned IL6KO mice receiving GTS-21 decreased significantly compared with sham-burn IL6KO mice. Superimposition of BI on IL6KO mice caused 100% mortality; GTS-21 reduced mortality to 75% in the IL6KO mice. The 75% mortality in burned WT mice was reduced to 0% with GTS-21. The in vitro findings suggest that GTS-21-induced IL-6 release from muscle is mediated via α7AChRs upstream of Stat-3 and -5 pathways and is associated with myonuclear accretion, possibly via MyoD and Pax7 expression. GTS-21 in vivo improves survival in burned WT mice and IL6KO mice, suggesting a potential therapeutic application of α7AChR agonists in the treatment of BI.


Asunto(s)
Compuestos de Bencilideno/farmacología , Quemaduras/tratamiento farmacológico , Interleucina-6/biosíntesis , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Mioblastos Esqueléticos/metabolismo , Piridinas/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Animales , Quemaduras/genética , Quemaduras/metabolismo , Línea Celular , Interleucina-6/genética , Ratones , Ratones Noqueados , Fibras Musculares Esqueléticas/patología , Proteínas Musculares/genética , Mioblastos Esqueléticos/patología , Receptor Nicotínico de Acetilcolina alfa 7/genética , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
20.
Shock ; 46(4): 382-9, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27172157

RESUMEN

INTRODUCTION: Skeletal muscle wasting and weakness with mitochondrial dysfunction (MD) are major pathological problems in burn injury (BI) patients. Fibrinogen levels elevated in plasma is an accepted risk factor for poor prognosis in many human diseases, and is also designated one of damage-associated molecular pattern (DAMPs) proteins. The roles of upregulated fibrinogen on muscle changes of critical illness including BI are unknown. The hypothesis tested was that BI-upregulated fibrinogen plays a pivotal role in the inflammatory responses and MD in muscles, and that DAMPs inhibitor, glycyrrhizin mitigates the muscle changes. METHODS: After third degree BI to mice, fibrinogen levels in the plasma and at skeletal muscles were compared between BI and sham-burn (SB) mice. Fibrinogen effects on inflammatory responses and mitochondrial membrane potential (MMP) loss were analyzed in C2C12 myotubes. In addition to survival, the anti-inflammatory and mitochondrial protective effects of glycyrrhizin were tested using in vivo microscopy of skeletal muscles of BI and SB mice. RESULTS: Fibrinogen in plasma and its extravasation to muscles significantly increased in BI versus SB mice. Fibrinogen applied to myotubes evoked inflammatory responses (increased MCP-1 and TNF-α; 32.6 and 3.9-fold, respectively) and reduced MMP; these changes were ameliorated by glycyrrhizin treatment. In vivo MMP loss and superoxide production in skeletal muscles of BI mice were significantly attenuated by glycyrrhizin treatment, together with improvement of BI survival rate. CONCLUSIONS: Inflammatory responses and MMP loss in myotubes induced by fibrinogen were reversed by glycyrrhizin. Anti-inflammatory and mitochondrial protective effect of glycyrrhizin in vivo leads to amelioration of muscle MD and improvement of BI survival rate.


Asunto(s)
Quemaduras/sangre , Quemaduras/tratamiento farmacológico , Quemaduras/metabolismo , Fibrinógeno/metabolismo , Ácido Glicirrínico/uso terapéutico , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Animales , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Fibrinógeno/farmacología , Masculino , Ratones , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA