Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 208: 111627, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33396147

RESUMEN

A pot study was conducted to explore the effectiveness of zinc oxide nanoparticles (ZnO NPs) foliar exposure on growth and development of wheat, zinc (Zn) and cadmium (Cd) uptake in Cd-contaminated soil under various moisture conditions. Four different levels (0, 25, 50, 100 mg/L) of these NPs were foliar-applied at different time periods during the growth of wheat. Two soil moisture regimes (70% and 35% of water holding capacity) were maintained from 6 weeks of germination till plant harvesting. The results revealed that the growth of wheat increased with ZnO NPs treatments. The best results were found in 100 mg/L ZnO NPs under normal moisture level. The lowest Cd and highest Zn concentrations were also examined when 100 mg/L NPs were applied without water deficit stress. In grain, Cd concentrations decreased by 26%, 81% and 87% in normal moisture while in water deficit conditions, the Cd concentrations decreased by 35%, 66% and 81% compared to control treatment when ZnO NPs were used at 25, 50 and 100 mg/L. The foliar exposure of ZnO NPs boosted up the leaf chlorophyll contents and also decreased the oxidative stress and enhanced the leaf superoxide dismutase and peroxidase activities than the control. It can be suggested that foliar use of ZnO NPs might be an efficient way for increasing wheat growth and yield with maximum Zn and minimum Cd contents under drought stress while decreasing the chances of NPs movement to other environmental compartment which may be possible in soil applied NPs.


Asunto(s)
Cadmio/toxicidad , Sequías , Nanopartículas/química , Contaminantes del Suelo/toxicidad , Triticum/fisiología , Óxido de Zinc/química , Cadmio/análisis , Clorofila , Grano Comestible/química , Contaminación Ambiental , Estrés Oxidativo , Hojas de la Planta/química , Suelo , Contaminantes del Suelo/análisis , Triticum/crecimiento & desarrollo , Agua , Zinc/análisis
2.
Environ Sci Pollut Res Int ; 29(51): 77321-77332, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35672649

RESUMEN

The effects of foliar supply of silicon nanoparticles (Si-NPs) on growth, physiology, and cadmium (Cd) uptake by wheat (Triticum aestivum L.) were examined in different soil moisture levels. Seeds were sown in soil containing excess Cd (7.67 mg kg-1) and Si-NPs were applied through foliar dressing with various levels (0, 25, 50, 100 mg L-1) at different time intervals during growth period. Initially, all pots were irrigated with normal moisture level (70% water-holding capacity) and two moisture levels (35%, 70% WHC) were initiated after 6 weeks of plant growth for remaining growth duration and harvesting was done after 124 days of sowing. The results demonstrated the lowest plant growth, yield, and chlorophyll concentrations while the highest oxidative stress and Cd concentrations in plant tissues in water-stressed control (35% WHC) followed by normal control (75% WHC). Si-NPs enhanced the growth, photosynthesis, leaf defense system, and Si concentrations in tissues while minimized the Cd in wheat parts particularly in grains either soil normal or water-stressed conditions. Of the foliar spray, 100 mg L-1 of Si-NPs showed the best results with respect to growth, Cd and Si uptake by plants, and soil post-harvest bioavailable Cd irrespective of soil water levels. In grain, Cd concentration was below threshold limit (0.2 mg kg-1) for cereals in 100-mg kg-1 Si-NPs treatment irrespective of soil water levels. Si-NPs foliar dressing under Cd and water-limited stress might be an effective strategy in increasing growth, yield, and decreasing Cd concentration in wheat grains under experimental conditions. Thus, foliar dressing of Si-NPs minimized the Cd risk in food crops and NPs entry to surroundings, which might be possible after harvesting of crops in soil-applied NPs.


Asunto(s)
Nanopartículas , Contaminantes del Suelo , Cadmio/análisis , Triticum , Silicio/farmacología , Contaminantes del Suelo/análisis , Suelo , Clorofila/farmacología , Grano Comestible/química , Agua
3.
Chemosphere ; 238: 124681, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31524618

RESUMEN

Excess amount of cadmium (Cd) in arable soils and shortage of good quality water are the major abiotic factors affecting the crop yield which needs immediate solution to feed the increasing population worldwide. Recently, nanoparticles (NPs) are widely used in various industries including agriculture which is due to the unique properties of NPs. Among NPs, iron (Fe) NPs might be used to alleviate the abiotic stresses in crops but limited informations are available in the literature about the role of Fe-NPs in crops under metal stress. The present study was designed to highlight the efficiency of Fe-NPs on Cd accumulation in Cd and drought-stressed wheat. Wheat plants were grown in Cd-contaminated soil after the supply of different levels of Fe-NPs and two water regimes were introduced in the soil in latter growth stages of the plants. Cadmium and drought stress negatively affected the wheat photosynthesis, yield and caused oxidative stress in leaves with excess accumulation of Cd in grains and other plant tissues. The NPs improved the photosynthesis, yield, Fe concentrations and diminished the Cd concentrations in tissues. The NPs alleviated the oxidative stress in leaves and the efficiency depends on the NPs concentrations applied in the soil. The results obtained indicated that Fe-NPs may be employed aiming to get wheat grains with excess Fe and decreased Cd contents. However, field investigations with various sizes, shapes and levels of NPs are needed before final recommendations to the farmers.


Asunto(s)
Cadmio/análisis , Sequías , Nanopartículas del Metal/química , Contaminantes del Suelo/análisis , Triticum/crecimiento & desarrollo , Producción de Cultivos , Compuestos Férricos/farmacología , Estrés Oxidativo/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/química , Suelo/química
4.
Environ Sci Pollut Res Int ; 27(5): 4958-4968, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31840219

RESUMEN

Soil degradation with different stress conditions like accumulation of cadmium (Cd) contents in soil and drought stress has become one of the most dangerous issues that obstruct the sustainable agriculture production. Silicon nanoparticles (Si NPs) play beneficial roles in combating various biotic and abiotic stresses but their role under combined metal and drought stress is not studied. A pot study was designed to determine the effect of Si NPs on wheat (Triticum aestivum L.) growth and uptake of Cd grown in Cd contaminated soil with different water levels under ambient conditions. Four different levels of Si NPs (0, 25, 50, and 100 mg/kg) were applied in the soil before 1 week of wheat sowing and two water levels (70% and 35% soil water-holding capacity) were introduced after 50 days of seed sowing for the remaining growth period. The lowest biomass, yield, and photosynthesis were observed in the control plants while oxidative stress and the highest Cd concentrations in shoots, roots, and grains were observed in the control plants, and the drought stress further enhanced this effect on the plants. The Si NPs treatments improved the plant growth indicators and photosynthesis, and reduced the Cd concentrations in wheat tissues, especially in grains either without or with drought stress. The Si NPs reduced the oxidative stress in leaves as was indicated by the reduced production of hydrogen peroxide, electrolyte leakage, and malondialdehyde contents, and increase in superoxide dismutase and peroxidase activities. The improvement in wheat growth and a reduction in oxidative stress and Cd concentration in tissues were dependent on the levels of Si NPs and the effect was the highest with the highest level of NPs used.


Asunto(s)
Cadmio/análisis , Nanopartículas , Silicio/análisis , Contaminantes del Suelo , Triticum/química , Silicio/química , Suelo
5.
Environ Sci Pollut Res Int ; 26(19): 19859-19870, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31090010

RESUMEN

Both cadmium (Cd) contamination in agricultural soils and drought stress pose a serious problem for crop quality and human health. Owing to the specific physical and chemical characteristics, zinc oxide (ZnO) nanoparticles (NPs) can be used in agriculture as a nanofertilizer but their impact on Cd accumulation in wheat (Triticum aestivum) grains under normal and limited water conditions remains insufficient. In this study, the efficiency of ZnO NPs on Cd intake by wheat was investigated under normal and water-limited conditions grown in Cd-contaminated soil for 125 days after seed sowing. The lower biomass and higher oxidative stress were observed in the tissues of the control and drought stress further decreased the plant biomass and caused oxidative stress. Zinc oxide NP treatments increased the tissue dry weight and minimized the oxidative stress either Cd stress alone or combined with drought. Drought stress enhanced the Cd contents in wheat tissues and grains, while ZnO NPs significantly reduced the Cd accumulation in tissues and grains by reducing the soil bioavailable Cd and its accumulation by roots. These findings depicted that NP application to contaminated soils can promote wheat productivity and effectively alleviate soil Cd contamination either alone or under water-limited conditions. The baseline data demonstrated in this study provide insights that pave the way towards safer wheat production under combined drought and metal stress. However, the application of NPs at field levels with numerous crops and climatic conditions needs to be investigated before final recommendation.


Asunto(s)
Cadmio/metabolismo , Nanopartículas del Metal/administración & dosificación , Estallido Respiratorio/efectos de los fármacos , Contaminantes del Suelo/metabolismo , Suelo/química , Triticum/efectos de los fármacos , Óxido de Zinc/administración & dosificación , Sequías , Fertilizantes/análisis , Triticum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA