Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 568: 158-166, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34217973

RESUMEN

The lactate dehydrogenase isoform A (LDHA) is a key metabolic enzyme that preferentially catalyzes the conversion of pyruvate to lactate. Whereas LDHA is highly expressed in many tissues, its expression is turned off in the differentiated adult ß-cell within the pancreatic islets. The repression of LDHA under normal physiological condition and its inappropriate upregulation under a diabetogenic environment is well-documented in rodent islets/ß-cells but little is known about LDHA expression in human islet cells and whether its abundance is altered under diabetic conditions. Analysis of public single-cell RNA-seq (sc-RNA seq) data as well as cell type-specific immunolabeling of human pancreatic islets showed that LDHA was mainly localized in human α-cells while it is expressed at a very low level in ß-cells. Furthermore, LDHA, both at mRNA and protein, as well as lactate production is upregulated in human pancreatic islets exposed to chronic high glucose treatment. Microscopic analysis of stressed human islets and autopsy pancreases from individuals with type 2 diabetes (T2D) showed LDHA upregulation mainly in human α-cells. Pharmacological inhibition of LDHA in isolated human islets enhanced insulin secretion under physiological conditions but did not significantly correct the deregulated secretion of insulin or glucagon under diabetic conditions.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Células Secretoras de Glucagón/metabolismo , L-Lactato Deshidrogenasa/genética , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Glucagón/citología , Glucosa/metabolismo , Humanos , Secreción de Insulina , L-Lactato Deshidrogenasa/análisis , L-Lactato Deshidrogenasa/metabolismo , ARN Mensajero/análisis , ARN Mensajero/genética , Regulación hacia Arriba
2.
Cell Rep ; 36(5): 109490, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34348155

RESUMEN

Pancreatic ß-cell failure is the key pathogenic element of the complex metabolic deterioration in type 2 diabetes (T2D); its underlying pathomechanism is still elusive. Here, we identify pleckstrin homology domain leucine-rich repeat protein phosphatases 1 and 2 (PHLPP1/2) as phosphatases whose upregulation leads to ß-cell failure in diabetes. PHLPP levels are highly elevated in metabolically stressed human and rodent diabetic ß-cells. Sustained hyper-activation of mechanistic target of rapamycin complex 1 (mTORC1) is the primary mechanism of the PHLPP upregulation linking chronic metabolic stress to ultimate ß-cell death. PHLPPs directly dephosphorylate and regulate activities of ß-cell survival-dependent kinases AKT and MST1, constituting a regulatory triangle loop to control ß-cell apoptosis. Genetic inhibition of PHLPPs markedly improves ß-cell survival and function in experimental models of diabetes in vitro, in vivo, and in primary human T2D islets. Our study presents PHLPPs as targets for functional regenerative therapy of pancreatic ß cells in diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/enzimología , Diabetes Mellitus Tipo 2/patología , Células Secretoras de Insulina/enzimología , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Animales , Apoptosis , Supervivencia Celular , Dieta Alta en Grasa , Femenino , Eliminación de Gen , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Secreción de Insulina , Células Secretoras de Insulina/patología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Noqueados , Modelos Biológicos , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Estrés Fisiológico , Regulación hacia Arriba
3.
J Plant Physiol ; 171(13): 1106-16, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24972025

RESUMEN

Cold stress affects many plant physiological and biochemical components and induces cascades of alterations in metabolic pathways, amongst them the membrane fatty acid compositions, the activity of antioxidative enzymes and the regulation of gene expression. The present work aimed to characterize the changes of some of these factors in both cold acclimated (CA) and non-acclimated (NA) plants of chickpea (Cicer arietinum L.) to identify the role of the acclimation process in adjusting plant responses to severe cold stress. The results showed an increase in the unsaturated fatty acids (UFAs) ratio compared to saturated fatty acids, which was more obvious in CA plants. Defense enzymes had an important role in CA plants to create greater cold tolerance compared to NA ones in the cases of superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX) and lipoxygenase (LOX) activities. During cold stress, a high transcription level of CaCAT and CaSOD genes was detected in CA plants, but a low transcription of CaLOX gene was observed in CA plants compared to NA plants, which might have prevented the decline of UFAs (confirmed by double bond index (DBI) data). Moreover, the transcription level of the Carubisco gene, as an energy producing agent, was higher in CA plants than in NA plants and the transcription of the Catubulin gene, as a crucial substance of cell cytoskeleton, showed a decreasing trend in both CA and NA plants, but this decline was greater in NA plants. These responses showed the possible targets of cold stress as chloroplast and signal transduction to balance stress programs. The above results indicate the crucial role of FA compositions in creating cold tolerance in susceptible chickpea plants with possible responsive components and the possible interactions in protein and transcript levels even in facing extreme cold stress.


Asunto(s)
Aclimatación , Cicer/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Estrés Fisiológico , Antioxidantes/metabolismo , Catalasa/genética , Catalasa/metabolismo , Cicer/enzimología , Cicer/genética , Frío , Ácidos Grasos Insaturados/metabolismo , Lipooxigenasa/genética , Lipooxigenasa/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Peroxidasa/genética , Peroxidasa/metabolismo , Proteínas de Plantas/genética , Prolina/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Plantones/enzimología , Plantones/genética , Plantones/fisiología , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA