Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Biotechnol Bioeng ; 115(10): 2504-2529, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29989145

RESUMEN

Isolation of circulating tumor cells (CTCs) from blood has long been a challenge due to the rarity and heterogeneity of these cells. Detection technologies have predominantly focused on different molecular or physical properties of CTCs. Size-based isolation approach using microfilters have been widely used to capture CTCs because of the difference in size and stiffness of the cells compared to other hemocytes. Isolation of rare cells based on their size was the original CTC enrichment technique and it demonstrated a simple yet rapid method that enhanced the recovery of cells with high throughput. In this review, we highlight key technical aspects of filter-based isolation, detection, and characterization of CTCs, and compare the clinical performance of filter-based devices with the approved platforms and immunoassays used for the analysis of CTCs. We have also discussed future prospective and incorporation of advances in immunochemistry technique into the filter-based platforms for enhancing the utility in clinical settings.


Asunto(s)
Separación Celular/métodos , Células Neoplásicas Circulantes , Animales , Humanos
2.
ACS Biomater Sci Eng ; 9(6): 3556-3569, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37067234

RESUMEN

Elevated glial fibrillary acidic protein (GFAP) in the blood serum is one of the promising bodily fluid markers for the diagnosis of central nervous system (CNS) injuries, including traumatic brain injury (TBI), stroke, and spinal cord injury (SCI). However, accurate and point-of-care (POC) quantification of GFAP in clinical blood samples has been challenging and yet to be clinically validated against gold-standard assays and outcome practices. This work engineered and characterized a novel nanoporous carbon screen-printed electrode with significantly increased surface area and conductivity, as well as preserved stability and anti-fouling properties. This nano-decorated electrode was immobilized with the target GFAP antibody to create an ultrasensitive GFAP immunosensor and quantify GFAP levels in spiked samples and the serum of CNS injury patients. The immunosensor presented a dynamic detection range of 100 fg/mL to 10 ng/mL, a limit of detection of 86.6 fg/mL, and a sensitivity of 20.3 Ω mL/pg mm2 for detecting GFAP in the serum. Its clinical utility was demonstrated by the consistent and selective quantification of GFAP comparable to the ultrasensitive single-molecule array technology in 107 serum samples collected from TBI, stroke, and SCI patients. Comparing the diagnostic and prognostic performance of the immunosensor with the existing clinical paradigms confirms the immunosensor's accuracy as a potential complement to the existing imaging diagnostic modalities and presents a potential for rapid, accurate, cost-effective, and near real-time POC diagnosis and prognosis of CNS injuries.


Asunto(s)
Técnicas Biosensibles , Lesiones Traumáticas del Encéfalo , Nanoporos , Traumatismos de la Médula Espinal , Accidente Cerebrovascular , Humanos , Carbono , Proteína Ácida Fibrilar de la Glía , Biomarcadores , Inmunoensayo , Lesiones Traumáticas del Encéfalo/diagnóstico , Traumatismos de la Médula Espinal/diagnóstico , Accidente Cerebrovascular/diagnóstico
3.
Adv Sci (Weinh) ; 10(15): e2206615, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36995043

RESUMEN

The widespread accessibility of commercial/clinically-viable electrochemical diagnostic systems for rapid quantification of viral proteins demands translational/preclinical investigations. Here, Covid-Sense (CoVSense) antigen testing platform; an all-in-one electrochemical nano-immunosensor for sample-to-result, self-validated, and accurate quantification of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid (N)-proteins in clinical examinations is developed. The platform's sensing strips benefit from a highly-sensitive, nanostructured surface, created through the incorporation of carboxyl-functionalized graphene nanosheets, and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) conductive polymers, enhancing the overall conductivity of the system. The nanoengineered surface chemistry allows for compatible direct assembly of bioreceptor molecules. CoVSense offers an inexpensive (<$2 kit) and fast/digital response (<10 min), measured using a customized hand-held reader (<$25), enabling data-driven outbreak management. The sensor shows 95% clinical sensitivity and 100% specificity (Ct<25), and overall sensitivity of 91% for combined symptomatic/asymptomatic cohort with wildtype SARS-CoV-2 or B.1.1.7 variant (N = 105, nasal/throat samples). The sensor correlates the N-protein levels to viral load, detecting high Ct values of ≈35, with no sample preparation steps, while outperforming the commercial rapid antigen tests. The current translational technology fills the gap in the workflow of rapid, point-of-care, and accurate diagnosis of COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Sensibilidad y Especificidad , Nucleocápside , Antígenos
4.
ACS Appl Mater Interfaces ; 14(25): 28651-28662, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35704794

RESUMEN

Future point-of-care (PoC) and wearable electrochemical biosensors explore new technology solutions to eliminate the need for multistep electrode modification and functionalization, overcome the limited reproducibility, and automate the sensing steps. In this work, a new screen-printed immuno-biosensor strip is engineered and characterized using a hybrid graphene nanosheet intermixed with the conductive poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) polymers, all embedded within the base carbon matrix (GiPEC) of the screen-printing ink. This intermixed nanocomposite ink is chemically designed for self-containing the "carboxyl" functional groups as the most specific chemical moiety for protein immobilization on the electrodes. The GiPEC ink enables capturing the target antibodies on the electrode without any need for extra surface preparation. As a proof of concept, the performance of the non-functionalized ready-to-immobilize strips was assessed for the detection of glial fibrillary acidic protein (GFAP) as a known central nervous system injury blood biomarker. This immuno-biosensor exhibits the limit of detection of 281.7 fg mL-1 (3 signal-to-noise ratio) and the sensitivity of 322.6 Ω mL pg-1 mm-2 within the clinically relevant linear detection range from 1 pg mL-1 to 10 ng mL-1. To showcase its potential PoC application, the bio-ready strip is embedded inside a capillary microfluidic device and automates electrochemical quantification of GFAP spiked in phosphate-buffered saline and the human serum. This new electrochemical biosensing platform can be further adapted for the detection of various protein biomarkers with the application in realizing on-chip immunoassays.


Asunto(s)
Técnicas Biosensibles , Grafito , Biomarcadores , Compuestos Bicíclicos Heterocíclicos con Puentes , Sistema Nervioso Central , Técnicas Electroquímicas , Electrodos , Grafito/química , Humanos , Polímeros/química , Reproducibilidad de los Resultados
5.
Biosens Bioelectron ; 178: 113033, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33517230

RESUMEN

Over 27 million individuals are affected every year worldwide with central nervous system (CNS) injuries. These injuries include but are not limited to traumatic brain injury (TBI) and spinal cord injury (SCI). CNS injuries remain a significant public health concern which demands reliable tools for rapid, on-sight, on-field, and point-of-care diagnostic (POC) solutions. To address these challenges, we developed a low-cost, open-source, hand-held, portable, and POC detection technology, termed as MicroDrop (µDrop), which can simultaneously detect up to eight target biomolecules and display results in both analog and digital formats. The data acquired is stored wirelessly in a cloud server for further investigation and statistical analysis. Multiplexing capability of µDrop and immuno-biosensors detects and quantifies Cleaved-Tau Protein (C-Tau) and Neuron-Filament (NFL) proteins in the blood of TBI patients. Immuno-biosensors rapidly sense the two target proteins in less than 30 min, with µDrop and a conventional potentiostat. C-Tau and NFL were selectively detected with µDrop within the dynamic range of 10 pg/mL - 100 ng/mL and the sensitivity range of 47 µA/pg mm2 - 65 µA/pg mm2. Comparing the biosensing performance with enzyme-linked immunosorbent assays (ELISA) shows that the immuno-biosensors combined with µDrop could successfully differentiate between clinical controls and injured patients.


Asunto(s)
Técnicas Biosensibles , Lesiones Traumáticas del Encéfalo , Biomarcadores , Lesiones Traumáticas del Encéfalo/diagnóstico , Humanos , Neuronas , Proteínas tau
6.
ACS Appl Mater Interfaces ; 12(6): 6910-6923, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31971367

RESUMEN

The conceptualization of body-on-a-chip in 2004 resulted in a new approach for studying human physiology in three-dimensional culture. Despite pioneering works and the progress made in replicating human physiology on-a-chip, the stability, reliability, and preservation of cell-culture-treated microfluidic chips remain a challenge. The development of a reliable surface treatment technique to more efficiently and reproducibly modify microfluidic channels would significantly simplify the process of creating and implementing organ-on-a-chip (OOC) systems. In this work, a new flow-based coating technique using bioinspired polymers was implemented to create reliable, reproducible, ready-to-use microfluidic cell culture chips for OOC studies. Single-channel polydimethylsiloxane microfluidic chips were coated with the bioinspired catecholamine polymers, polydopamine (PDA) and polynorepinephrine (PNE), using a flow-based coating technique. The functionality of the resulting microfluidic chips was evaluated by extensive surface characterizations, at 130 °C, in the presence of various cleaning and culture media in static and flow conditions regularly used in OOCs and tested for shelf life by storing the coated microfluidic chips for 4 months at room temperature. Microfluidic chips coated with polycatecholamine were then seeded with the mouse cancer cell line Cath.a.differentiated (CAD) and with the normal human cerebral microvascular endothelial cell line human cerebral microvascular endothelial cells (hCMEC)/D3. Cell viability, cell phenotype, and cell functionality were assessed to evaluate the performance of both the coatings and the surface treatment technique. Both PDA- and PNE-coated microfluidic chips maintained high viability, phenotype, and functionality of CAD cells and hCMEC/D3 cells. In addition, CAD cells retained high viability when they were cultured in both the polymer-coated chips, which were stored at room temperature for up to 120 days. These results suggest that flow-based techniques to coat surfaces with polycatecholamines can be used to generate ready-to-use microfluidic OOC chips that offer long-term stability and reliability for the culture of cell types with application in pathophysiological studies and drug screening.


Asunto(s)
Catecolaminas/química , Células Endoteliales/citología , Microfluídica/métodos , Animales , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Supervivencia Celular , Dimetilpolisiloxanos/química , Humanos , Indoles/química , Ratones , Microfluídica/instrumentación , Polímeros/química
7.
Biosens Bioelectron ; 145: 111715, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31561093

RESUMEN

Rapid, selective, and ultra-sensitive detection of brain and spinal cord injury markers in bodily fluids is an unmet clinical need. In this work, Polycatecholamine as a rich source of amine moieties was used for single-step fabrication of ultrasensitive immunosensors for the detection of Ubiquitin carboxyl-terminal hydrolase (UCHL-1) biomarker of brain and spinal cord injuries and address the clinical need. The surface of graphene electrodes was modified by electropolymerizing aqueous solution of dopamine (DA) and norepinephrine (NE) monomers for generating polycatecholamines nanofilms on the surface of graphene screen printed electrodes (GSPE) in a single functionalization step. Amine moieties of the polymer allowed immobilization of UCHL-1 antibody on the electrode. The single-step modification of GSPE offered a simple, ultrasensitive, and stable production of immunosensors for the detection of UCHL-1. The operational range of the UCHL-1 immunosensor developed with Polynorepinephrine pNE-modified is 0.1 pg mL-1 - 105 pg mL-1 (LOD: 1.91 pg mL-1), and 1 pg mL-1 - 105 pg mL-1 (LOD: 0.70 pg mL-1) with Polydopamine (pDA) modification, satisfying the clinical range. Both pNE and pDA modified immunosensors, detected UCHL-1 spiked in phosphate buffer saline, artificial cerebrospinal fluid, and serum. Along with the sensitive detections, selective performances were recorded in the above matrices in the presence of interfering neurotransmitters GABA and Glutamate as well as glial fibrillary acidic protein (GFAP). Upon testing clinical samples of spinal cord injury patients and healthy controls, both pNE and pDA immunosensors, delivered a comparable response for UCHL-1, thereby, making immunosensors useful for clinical settings.


Asunto(s)
Técnicas Biosensibles , Inmunoensayo , Traumatismos de la Médula Espinal/diagnóstico , Ubiquitina Tiolesterasa/aislamiento & purificación , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Catecolaminas/química , Dopamina/química , Grafito/química , Humanos , Norepinefrina/química , Ubiquitina Tiolesterasa/sangre , Ubiquitina Tiolesterasa/líquido cefalorraquídeo , Ácido gamma-Aminobutírico/metabolismo
8.
ACS Sens ; 3(4): 844-851, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29516727

RESUMEN

Glial fibrillary acidic protein (GFAP) is as an intermediate filament protein expressed by certain cells in the central nervous system (CNS). GFAP has been recognized as a reliable biomarker of CNS injury. However, due to the absence of rapid and easy-to-use assays for the detection of CNS injury biomarkers, measuring GFAP levels to identify CNS injury has not attained widespread clinical implementation. In the present work, we developed a polyethylenimine (PEI) coated graphene screen-printed electrode and used it for highly sensitive immunosensing of GFAP. Covalent binding of GFAP antibody to the PEI-modified electrode surface along with electrochemical impedance spectroscopy was used for detecting the change in the electrical conductivity of the electrodes. A highly linear response was recorded for various GFAP concentrations. Quantitative, selective, and label-free detection was achieved in the dynamic range of 1 pg mL-1 to 100 ng mL-1 for GFAP spiked in phosphate buffer saline, artificial cerebrospinal fluid, and human blood serum. The performance of the immunosensor was further validated and correlated by testing samples with the commercially available enzyme-linked immunosorbent assay method. This functionalized electrode could be used clinically for rapid detection and monitoring of CNS injury.


Asunto(s)
Técnicas Electroquímicas , Ensayo de Inmunoadsorción Enzimática , Proteína Ácida Fibrilar de la Glía/análisis , Grafito/química , Polietileneimina/química , Traumatismos del Sistema Nervioso/diagnóstico , Traumatismos del Sistema Nervioso/metabolismo , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
9.
Acta Biomater ; 62: 42-63, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28736220

RESUMEN

Hydrogels have been recognized as crucial biomaterials in the field of tissue engineering, regenerative medicine, and drug delivery applications due to their specific characteristics. These biomaterials benefit from retaining a large amount of water, effective mass transfer, similarity to natural tissues and the ability to form different shapes. However, having relatively poor mechanical properties is a limiting factor associated with hydrogel biomaterials. Controlling the biomechanical properties of hydrogels is of paramount importance. In this work, firstly, mechanical characteristics of hydrogels and methods employed for characterizing these properties are explored. Subsequently, the most common approaches used for tuning mechanical properties of hydrogels including but are not limited to, interpenetrating polymer networks, nanocomposites, self-assembly techniques, and co-polymerization are discussed. The performance of different techniques used for tuning biomechanical properties of hydrogels is further compared. Such techniques involve lithography techniques for replication of tissues with complex mechanical profiles; microfluidic techniques applicable for generating gradients of mechanical properties in hydrogel biomaterials for engineering complex human tissues like intervertebral discs, osteochondral tissues, blood vessels and skin layers; and electrospinning techniques for synthesis of hybrid hydrogels and highly ordered fibers with tunable mechanical and biological properties. We finally discuss future perspectives and challenges for controlling biomimetic hydrogel materials possessing proper biomechanical properties. STATEMENT OF SIGNIFICANCE: Hydrogels biomaterials are essential constituting components of engineered tissues with the applications in regenerative medicine and drug delivery. The mechanical properties of hydrogels play crucial roles in regulating the interactions between cells and extracellular matrix and directing the cells phenotype and genotype. Despite significant advances in developing methods and techniques with the ability of tuning the biomechanical properties of hydrogels, there are still challenges regarding the synthesis of hydrogels with complex mechanical profiles as well as limitations in vascularization and patterning of complex structures of natural tissues which barricade the production of sophisticated organs. Therefore, in addition to a review on advanced methods and techniques for measuring a variety of different biomechanical characteristics of hydrogels, the new techniques for enhancing the biomechanics of hydrogels are presented. It is expected that this review will profit future works for regulating the biomechanical properties of hydrogel biomaterials to satisfy the demands of a variety of different human tissues.


Asunto(s)
Materiales Biocompatibles/uso terapéutico , Materiales Biomiméticos/uso terapéutico , Hidrogeles/uso terapéutico , Ingeniería de Tejidos/métodos , Animales , Humanos
10.
Drug Discov Today ; 22(11): 1654-1670, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28684326

RESUMEN

The study of cancer growth mechanisms and the determination of the efficacy of experimental therapeutics are usually performed in two-dimensional (2D) cell culture models. However, these models are incapable of mimicking complex interactions between cancer cells and the environment. With the advent of microfluidic technologies, the combination of multiple cell cultures with mechanical and biochemical stimuli has enabled a better recapitulation of the three-dimensional (3D) tumor environment using minute amounts of reagents. These models can also be used to study drug transport, hypoxia, and interstitial pressure within the tumor. In this review, we highlight the applications of microfluidic-based models in anticancer drug studies and provide a perspective on the future of the clinical applications of microfluidic systems for anticancer drug development.


Asunto(s)
Antineoplásicos/farmacología , Microfluídica/métodos , Neoplasias/tratamiento farmacológico , Animales , Técnicas de Cultivo de Célula/métodos , Diseño de Fármacos , Humanos , Dispositivos Laboratorio en un Chip , Modelos Biológicos , Neoplasias/patología
11.
Nanoscale ; 9(5): 1852-1861, 2017 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-27845796

RESUMEN

Rapid and sensitive point-of-care diagnostics are of paramount importance for early detection of infectious diseases and timely initiation of treatment. Here, we present cellulose paper and flexible plastic chips with printed graphene-modified silver electrodes as universal point-of-care diagnostic tools for the rapid and sensitive detection of microbial pathogens or nucleic acids through utilizing electrical sensing modality and loop-mediated isothermal amplification (LAMP). We evaluated the ability of the developed paper-based assay to detect (i) viruses on cellulose-based paper microchips without implementing amplification in samples with viral loads between 106 and 108 copies per ml, and (ii) amplified HIV-1 nucleic acids in samples with viral loads between 10 fg µl-1 and 108 fg µl-1. The target HIV-1 nucleic acid was amplified using the RT-LAMP technique and detected through the electrical sensing of LAMP amplicons for a broad range of RNA concentrations between 10 fg µl-1 and 108 fg µl-1 after 40 min of amplification time. Our assay may be used for antiretroviral therapy monitoring where it meets the sensitivity requirement of the World Health Organization guidelines. Such a paper microchip assay without the amplification step may also be considered as a simple and inexpensive approach for acute HIV detection where maximum viral replication occurs.


Asunto(s)
Electrodos , VIH-1/aislamiento & purificación , Dispositivos Laboratorio en un Chip , Nanocompuestos , Técnicas de Amplificación de Ácido Nucleico , ARN Viral/aislamiento & purificación , Cartilla de ADN , Grafito , Papel , Sensibilidad y Especificidad , Plata
12.
Biosens Bioelectron ; 80: 230-236, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26851580

RESUMEN

Certain viruses, such as herpesviruses, are capable of persistent and latent infection of host cells. Distinguishing and separating live, latently infected cells from uninfected cells is not easily attainable using current approaches. The ability to perform such separation would greatly enhance the ability to study primary, infected cells and potentially enable elimination of latently infected cells from the host. Here, the dielectrophoretic response of B cells infected with Kaposi's sarcoma-associated herpesvirus (KSHV) were investigated and compared to uninfected B cells. We evaluated the effect of applied voltage, signal frequency, and flow rate of the sample on the cell capture efficiency. We achieved 37.1% ± 8.5% difference in capture efficiencies between latently KSHV-infected and uninfected BJAB B lymphoma cells at the chip operational conditions of 1V, 50 kHz and 0.02 µl/min sample flow rate. Our results show that latently infected B lymphoma cells demonstrated significantly different electrical response compared to uninfected B cells and DEP-based microchips can be potentially used for sorting latently infected cells based on their electrical properties.


Asunto(s)
Técnicas Biosensibles , Herpesvirus Humano 8/aislamiento & purificación , Linfoma de Células B/virología , Proteínas Virales/aislamiento & purificación , Herpesvirus Humano 8/patogenicidad , Humanos , Linfoma de Células B/diagnóstico , Sarcoma de Kaposi/virología , Proteínas Virales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA