Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 17(9): e1009802, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34543263

RESUMEN

Triglyceride-rich lipoproteins (TRLs) are circulating reservoirs of fatty acids used as vital energy sources for peripheral tissues. Lipoprotein lipase (LPL) is a predominant enzyme mediating triglyceride (TG) lipolysis and TRL clearance to provide fatty acids to tissues in animals. Physiological and human genetic evidence support a primary role for LPL in hydrolyzing TRL TGs. We hypothesized that endothelial lipase (EL), another extracellular lipase that primarily hydrolyzes lipoprotein phospholipids may also contribute to TRL metabolism. To explore this, we studied the impact of genetic EL loss-of-function on TRL metabolism in humans and mice. Humans carrying a loss-of-function missense variant in LIPG, p.Asn396Ser (rs77960347), demonstrated elevated plasma TGs and elevated phospholipids in TRLs, among other lipoprotein classes. Mice with germline EL deficiency challenged with excess dietary TG through refeeding or a high-fat diet exhibited elevated TGs, delayed dietary TRL clearance, and impaired TRL TG lipolysis in vivo that was rescued by EL reconstitution in the liver. Lipidomic analyses of postprandial plasma from high-fat fed Lipg-/- mice demonstrated accumulation of phospholipids and TGs harboring long-chain polyunsaturated fatty acids (PUFAs), known substrates for EL lipolysis. In vitro and in vivo, EL and LPL together promoted greater TG lipolysis than either extracellular lipase alone. Our data positions EL as a key collaborator of LPL to mediate efficient lipolysis of TRLs in humans and mice.


Asunto(s)
Lipasa/metabolismo , Lipólisis , Lipoproteínas/metabolismo , Triglicéridos/metabolismo , Animales , Dieta Alta en Grasa , Humanos , Lipasa/genética , Liposomas , Ratones , Mutación Missense , Periodo Posprandial , Triglicéridos/sangre
2.
Nature ; 544(7649): 235-239, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28406212

RESUMEN

A major goal of biomedicine is to understand the function of every gene in the human genome. Loss-of-function mutations can disrupt both copies of a given gene in humans and phenotypic analysis of such 'human knockouts' can provide insight into gene function. Consanguineous unions are more likely to result in offspring carrying homozygous loss-of-function mutations. In Pakistan, consanguinity rates are notably high. Here we sequence the protein-coding regions of 10,503 adult participants in the Pakistan Risk of Myocardial Infarction Study (PROMIS), designed to understand the determinants of cardiometabolic diseases in individuals from South Asia. We identified individuals carrying homozygous predicted loss-of-function (pLoF) mutations, and performed phenotypic analysis involving more than 200 biochemical and disease traits. We enumerated 49,138 rare (<1% minor allele frequency) pLoF mutations. These pLoF mutations are estimated to knock out 1,317 genes, each in at least one participant. Homozygosity for pLoF mutations at PLA2G7 was associated with absent enzymatic activity of soluble lipoprotein-associated phospholipase A2; at CYP2F1, with higher plasma interleukin-8 concentrations; at TREH, with lower concentrations of apoB-containing lipoprotein subfractions; at either A3GALT2 or NRG4, with markedly reduced plasma insulin C-peptide concentrations; and at SLC9A3R1, with mediators of calcium and phosphate signalling. Heterozygous deficiency of APOC3 has been shown to protect against coronary heart disease; we identified APOC3 homozygous pLoF carriers in our cohort. We recruited these human knockouts and challenged them with an oral fat load. Compared with family members lacking the mutation, individuals with APOC3 knocked out displayed marked blunting of the usual post-prandial rise in plasma triglycerides. Overall, these observations provide a roadmap for a 'human knockout project', a systematic effort to understand the phenotypic consequences of complete disruption of genes in humans.


Asunto(s)
Consanguinidad , Análisis Mutacional de ADN , Eliminación de Gen , Genes/genética , Estudios de Asociación Genética/métodos , Homocigoto , Fenotipo , 1-Alquil-2-acetilglicerofosfocolina Esterasa/deficiencia , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Apolipoproteína C-III/deficiencia , Apolipoproteína C-III/genética , Estudios de Cohortes , Enfermedad Coronaria/sangre , Enfermedad Coronaria/genética , Familia 2 del Citocromo P450/genética , Grasas de la Dieta/farmacología , Exoma/genética , Ayuno/sangre , Femenino , Frecuencia de los Genes , Humanos , Interleucina-8/sangre , Masculino , Persona de Mediana Edad , Infarto del Miocardio/sangre , Infarto del Miocardio/genética , Neurregulinas/genética , Pakistán , Linaje , Fosfoproteínas/genética , Periodo Posprandial , Sitios de Empalme de ARN/genética , Genética Inversa/métodos , Intercambiadores de Sodio-Hidrógeno/genética , Triglicéridos/sangre
3.
Proc Natl Acad Sci U S A ; 116(46): 23232-23242, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31659023

RESUMEN

PM20D1 is a candidate thermogenic enzyme in mouse fat, with its expression cold-induced and enriched in brown versus white adipocytes. Thiazolidinedione (TZD) antidiabetic drugs, which activate the peroxisome proliferator-activated receptor-γ (PPARγ) nuclear receptor, are potent stimuli for adipocyte browning yet fail to induce Pm20d1 expression in mouse adipocytes. In contrast, PM20D1 is one of the most strongly TZD-induced transcripts in human adipocytes, although not in cells from all individuals. Two putative PPARγ binding sites exist near the gene's transcription start site (TSS) in human but not mouse adipocytes. The -4 kb upstream site falls in a segmental duplication of a nearly identical intronic region +2.5 kb downstream of the TSS, and this duplication occurred in the primate lineage and not in other mammals, like mice. PPARγ binding and gene activation occur via this upstream duplicated site, thus explaining the species difference. Furthermore, this functional upstream PPARγ site exhibits genetic variation among people, with 1 SNP allele disrupting a PPAR response element and giving less activation by PPARγ and TZDs. In addition to this upstream variant that determines PPARγ regulation of PM20D1 in adipocytes, distinct variants downstream of the TSS have strong effects on PM20D1 expression in human fat as well as other tissues. A haplotype of 7 tightly linked downstream SNP alleles is associated with very low PMD201 expression and correspondingly high DNA methylation at the TSS. These PM20D1 low-expression variants may account for human genetic associations in this region with obesity as well as neurodegenerative diseases.


Asunto(s)
Adipocitos/metabolismo , Amidohidrolasas/metabolismo , PPAR gamma/metabolismo , Tejido Adiposo/metabolismo , Amidohidrolasas/genética , Animales , Expresión Génica , Regulación de la Expresión Génica , Variación Genética , Humanos , Masculino , Ratones , Obesidad/genética , Fenotipo , Tiazolidinedionas
4.
Brain ; 143(4): 1114-1126, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32293671

RESUMEN

Congenital disorders of glycosylation are a growing group of rare genetic disorders caused by deficient protein and lipid glycosylation. Here, we report the clinical, biochemical, and molecular features of seven patients from four families with GALNT2-congenital disorder of glycosylation (GALNT2-CDG), an O-linked glycosylation disorder. GALNT2 encodes the Golgi-localized polypeptide N-acetyl-d-galactosamine-transferase 2 isoenzyme. GALNT2 is widely expressed in most cell types and directs initiation of mucin-type protein O-glycosylation. All patients showed loss of O-glycosylation of apolipoprotein C-III, a non-redundant substrate for GALNT2. Patients with GALNT2-CDG generally exhibit a syndrome characterized by global developmental delay, intellectual disability with language deficit, autistic features, behavioural abnormalities, epilepsy, chronic insomnia, white matter changes on brain MRI, dysmorphic features, decreased stature, and decreased high density lipoprotein cholesterol levels. Rodent (mouse and rat) models of GALNT2-CDG recapitulated much of the human phenotype, including poor growth and neurodevelopmental abnormalities. In behavioural studies, GALNT2-CDG mice demonstrated cerebellar motor deficits, decreased sociability, and impaired sensory integration and processing. The multisystem nature of phenotypes in patients and rodent models of GALNT2-CDG suggest that there are multiple non-redundant protein substrates of GALNT2 in various tissues, including brain, which are critical to normal growth and development.


Asunto(s)
Apolipoproteína C-III/sangre , Discapacidades del Desarrollo/genética , N-Acetilgalactosaminiltransferasas/genética , Adolescente , Animales , Apolipoproteína C-III/genética , Niño , Preescolar , Femenino , Glicosilación , Humanos , Mutación con Pérdida de Función , Masculino , Ratones , Linaje , Ratas , Adulto Joven , Polipéptido N-Acetilgalactosaminiltransferasa
5.
Proc Natl Acad Sci U S A ; 112(47): 14623-8, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26554003

RESUMEN

Regulated shedding of the ectodomain of cell membrane proteins by proteases is a common process that releases the extracellular domain from the cell and activates cell signaling. Ectodomain shedding occurs in the immediate extracellular juxtamembrane region, which is also where O-glycosylation is often found and examples of crosstalk between shedding and O-glycosylation have been reported. Here, we systematically investigated the potential of site-specific O-glycosylation mediated by distinct polypeptide GalNAc-transferase (GalNAc-T) isoforms to coregulate ectodomain shedding mediated by the A Disintegrin And Metalloproteinase (ADAM) subfamily of proteases and in particular ADAM17. We analyzed 25 membrane proteins that are known to undergo ADAM17 shedding and where the processing sites included Ser/Thr residues within ± 4 residues that could represent O-glycosites. We used in vitro GalNAc-T enzyme and ADAM cleavage assays to demonstrate that shedding of at least 12 of these proteins are potentially coregulated by O-glycosylation. Using TNF-α as an example, we confirmed that shedding mediated by ADAM17 is coregulated by O-glycosylation controlled by the GalNAc-T2 isoform both ex vivo in isogenic cell models and in vivo in mouse Galnt2 knockouts. The study provides compelling evidence for a wider role of site-specific O-glycosylation in ectodomain shedding.


Asunto(s)
Proteínas ADAM/química , Proteínas ADAM/metabolismo , Secuencia de Aminoácidos , Animales , Western Blotting , Genes Reporteros , Glicopéptidos/química , Glicopéptidos/metabolismo , Glicosilación/efectos de los fármacos , Células HEK293 , Células Hep G2 , Humanos , Lipopolisacáridos/farmacología , Ratones Noqueados , Datos de Secuencia Molecular , Mutación/genética , N-Acetilgalactosaminiltransferasas/metabolismo , Estructura Terciaria de Proteína , Especificidad por Sustrato/efectos de los fármacos , Factor de Necrosis Tumoral alfa/sangre , Factor de Necrosis Tumoral alfa/metabolismo , Polipéptido N-Acetilgalactosaminiltransferasa
6.
J Lipid Res ; 58(11): 2162-2170, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28870971

RESUMEN

HDL cholesterol (HDL-C) remains a superior biochemical predictor of CVD risk, but its genetic basis is incompletely defined. In patients with extreme HDL-C concentrations, we concurrently evaluated the contributions of multiple large- and small-effect genetic variants. In a discovery cohort of 255 unrelated lipid clinic patients with extreme HDL-C levels, we used a targeted next-generation sequencing panel to evaluate rare variants in known HDL metabolism genes, simultaneously with common variants bundled into a polygenic trait score. Two additional cohorts were used for validation and included 1,746 individuals from the Montréal Heart Institute Biobank and 1,048 individuals from the University of Pennsylvania. Findings were consistent between cohorts: we found rare heterozygous large-effect variants in 18.7% and 10.9% of low- and high-HDL-C patients, respectively. We also found common variant accumulation, indicated by extreme polygenic trait scores, in an additional 12.8% and 19.3% of overall cases of low- and high-HDL-C extremes, respectively. Thus, the genetic basis of extreme HDL-C concentrations encountered clinically is frequently polygenic, with contributions from both rare large-effect and common small-effect variants. Multiple types of genetic variants should be considered as contributing factors in patients with extreme dyslipidemia.


Asunto(s)
HDL-Colesterol/sangre , HDL-Colesterol/genética , Genotipo , Adulto , Anciano , Femenino , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad
7.
Am J Hum Genet ; 94(2): 223-32, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24507774

RESUMEN

Low-frequency coding DNA sequence variants in the proprotein convertase subtilisin/kexin type 9 gene (PCSK9) lower plasma low-density lipoprotein cholesterol (LDL-C), protect against risk of coronary heart disease (CHD), and have prompted the development of a new class of therapeutics. It is uncertain whether the PCSK9 example represents a paradigm or an isolated exception. We used the "Exome Array" to genotype >200,000 low-frequency and rare coding sequence variants across the genome in 56,538 individuals (42,208 European ancestry [EA] and 14,330 African ancestry [AA]) and tested these variants for association with LDL-C, high-density lipoprotein cholesterol (HDL-C), and triglycerides. Although we did not identify new genes associated with LDL-C, we did identify four low-frequency (frequencies between 0.1% and 2%) variants (ANGPTL8 rs145464906 [c.361C>T; p.Gln121*], PAFAH1B2 rs186808413 [c.482C>T; p.Ser161Leu], COL18A1 rs114139997 [c.331G>A; p.Gly111Arg], and PCSK7 rs142953140 [c.1511G>A; p.Arg504His]) with large effects on HDL-C and/or triglycerides. None of these four variants was associated with risk for CHD, suggesting that examples of low-frequency coding variants with robust effects on both lipids and CHD will be limited.


Asunto(s)
HDL-Colesterol/genética , LDL-Colesterol/genética , Enfermedad Coronaria/genética , Frecuencia de los Genes , Variación Genética , Triglicéridos/sangre , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , 1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Adulto , Anciano , Alelos , Animales , Población Negra/genética , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Estudios de Cohortes , Enfermedad Coronaria/sangre , Femenino , Estudios de Asociación Genética , Código Genético , Humanos , Modelos Lineales , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Persona de Mediana Edad , Fenotipo , Análisis de Secuencia de ADN , Subtilisinas/genética , Subtilisinas/metabolismo , Población Blanca/genética
9.
Curr Cardiol Rep ; 19(12): 132, 2017 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-29103089

RESUMEN

PURPOSE OF REVIEW: Elevated high-density lipoprotein cholesterol levels in the blood (HDL-C) represent one of the strongest epidemiological surrogates for protection against coronary heart disease (CHD), but recent human genetic and pharmacological intervention studies have raised controversy about the causality of this relationship. Here, we review recent discoveries from human genome studies using new analytic tools as well as relevant animal studies that have both addressed, and in some cases, fueled this controversy. RECENT FINDINGS: Methodologic developments in genotyping and sequencing, such as genome-wide association studies (GWAS), exome sequencing, and exome array genotyping, have been applied to the study of HDL-C and risk of CHD in large, multi-ethnic populations. Some of these efforts focused on population-wide variation in common variants have uncovered new polymorphisms at novel loci associated with HDL-C and, in some cases, CHD risk. Other efforts have discovered loss-of-function variants for the first time in genes previously implicated in HDL metabolism through common variant studies or animal models. These studies have allowed the genetic relationship between these pathways, HDL-C and CHD to be explored in humans for the first time through analysis tools such as Mendelian randomization. We explore these discoveries for selected key HDL-C genes CETP, LCAT, LIPG, SCARB1, and novel loci implicated from GWAS including GALNT2, KLF14, and TTC39B. Recent human genetics findings have identified new nodes regulating HDL metabolism while reshaping our current understanding of known candidate genes to HDL and CHD risk through the study of critical variants across model systems. Despite their effect on HDL-C, variants in many of the reviewed genes were found to lack any association with CHD. These data collectively indicate that HDL-C concentration, which represents a static picture of a very dynamic and heterogeneous metabolic milieu, is unlikely to be itself causally protective against CHD. In this context, human genetics represent an extremely valuable tool to further explore the biological mechanisms regulating HDL metabolism and investigate what role, if any, HDL plays in the pathogenesis of CHD.


Asunto(s)
HDL-Colesterol/metabolismo , Enfermedad Coronaria/genética , Enfermedad Coronaria/metabolismo , Predisposición Genética a la Enfermedad , Biomarcadores/sangre , HDL-Colesterol/sangre , Enfermedad Coronaria/sangre , Enfermedad Coronaria/fisiopatología , Estudio de Asociación del Genoma Completo , Humanos , Metabolismo de los Lípidos/genética , Análisis de la Aleatorización Mendeliana , Terapia Molecular Dirigida , Secuenciación del Exoma
10.
Curr Atheroscler Rep ; 18(9): 54, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27443326

RESUMEN

Triglyceride-rich lipoproteins (TRLs) are causal contributors to the risk of developing coronary artery disease (CAD). Apolipoprotein C-III (apoC-III) is a component of TRLs that elevates plasma triglycerides (TGs) through delaying the lipolysis of TGs and the catabolism of TRL remnants. Recent human genetics approaches have shown that heterozygous loss-of-function mutations in APOC3, the gene encoding apoC-III, lower plasma TGs and protect from CAD. This observation has spawned new interest in therapeutic efforts to target apoC-III. Here, we briefly review both currently available as well as developing therapies for reducing apoC-III levels and function to lower TGs and cardiovascular risk. These therapies include existing options including statins, fibrates, thiazolidinediones, omega-3-fatty acids, and niacin, as well as an antisense oligonucleotide targeting APOC3 currently in clinical development. We review the mechanisms of action by which these drugs reduce apoC-III and the current understanding of how reduction in apoC-III may impact CAD risk.


Asunto(s)
Apolipoproteína C-III/fisiología , Enfermedad de la Arteria Coronaria/etiología , Enfermedad de la Arteria Coronaria/prevención & control , Humanos , Lipoproteínas , Oligonucleótidos Antisentido , Factores de Riesgo , Triglicéridos
11.
Arterioscler Thromb Vasc Biol ; 35(8): 1880-8, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26069232

RESUMEN

OBJECTIVE: Triglyceride-rich lipoproteins have emerged as causal risk factors for developing coronary heart disease independent of low-density lipoprotein cholesterol levels. Apolipoprotein C-III (ApoC-III) modulates triglyceride-rich lipoprotein metabolism through inhibition of lipoprotein lipase and hepatic uptake of triglyceride-rich lipoproteins. Mutations causing loss-of-function of ApoC-III lower triglycerides and reduce coronary heart disease risk, suggestive of a causal role for ApoC-III. Little data exist about the relationship of ApoC-III, triglycerides, and atherosclerosis in patients with type 2 diabetes mellitus (T2DM). Here, we examined the relationships between plasma ApoC-III, triglycerides, and coronary artery calcification in patients with T2DM. APPROACH AND RESULTS: Plasma ApoC-III levels were measured in a cross-sectional study of 1422 subjects with T2DM but without clinically manifest coronary heart disease. ApoC-III levels were positively associated with total cholesterol (Spearman r=0.36), triglycerides (r=0.59), low-density lipoprotein cholesterol (r=0.16), fasting glucose (r=0.16), and glycosylated hemoglobin (r=0.12; P<0.0001 for all). In age, sex, and race-adjusted analysis, ApoC-III levels were positively associated with coronary artery calcification (Tobit regression ratio, 1.78; 95% confidence interval, 1.27-2.50 per SD increase in ApoC-III; P<0.001). As expected for an intermediate mediator, these findings were attenuated when adjusted for both triglycerides (Tobit regression ratio, 1.43; 95% confidence interval, 0.94-2.18; P=0.086) and separately for very low-density lipoprotein cholesterol (Tobit regression ratio, 1.14; 95% confidence interval, 0.75-1.71; P=0.53). CONCLUSIONS: In persons with T2DM, increased plasma ApoC-III is associated with higher triglycerides, less favorable cardiometabolic phenotypes, and higher coronary artery calcification, a measure of subclinical atherosclerosis. Therapeutic inhibition of ApoC-III may thus be a novel strategy for reducing plasma triglyceride-rich lipoproteins and cardiovascular risk in T2DM.


Asunto(s)
Apolipoproteína C-III/sangre , Enfermedad de la Arteria Coronaria/etiología , Diabetes Mellitus Tipo 2/complicaciones , Angiopatías Diabéticas/etiología , Dislipidemias/complicaciones , Triglicéridos/sangre , Calcificación Vascular/etiología , Adulto , Anciano , Biomarcadores/sangre , Glucemia/análisis , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/diagnóstico , Estudios Transversales , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/diagnóstico , Angiopatías Diabéticas/sangre , Angiopatías Diabéticas/diagnóstico , Dislipidemias/sangre , Dislipidemias/diagnóstico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Philadelphia , Factores de Riesgo , Regulación hacia Arriba , Calcificación Vascular/sangre , Calcificación Vascular/diagnóstico
12.
Biochim Biophys Acta ; 1842(10): 2010-2020, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24931102

RESUMEN

A wealth of novel lipid loci have been identified through a variety of approaches focused on common and low-frequency variation and collaborative metaanalyses in multiethnic populations. Despite progress in identification of loci, the task of determining causal variants remains challenging. This work will undoubtedly be enhanced by improved understanding of regulatory DNA at a genomewide level as well as new methodologies for interrogating the relationships between noncoding SNPs and regulatory regions. Equally challenging is the identification of causal genes at novel loci. Some progress has been made for a handful of genes and comprehensive testing of candidate genes using multiple model systems is underway. Additional insights will be gleaned from focusing on low frequency and rare coding variation at candidate loci in large populations. This article is part of a Special Issue entitled: From Genome to Function.

13.
BMC Nephrol ; 16: 130, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26238454

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) is associated with dyslipidemia, but the role of atherogenic lipid fractions in CKD progression remains unclear. Here we assess whether baseline plasma levels of lipoprotein(a) [Lp(a)] and apolipoprotein C-III (apoC-III), causal cardiovascular (CV) risk factors being studied as therapeutic targets, are associated with decreasing estimated glomerular filtration rate (eGFR) over time. METHODS: In the Penn Diabetes Heart Study (PDHS), a single-center observational cohort of type 2 diabetes patients without clinical CV disease or pre-existing CKD, we performed linear mixed effects modeling with incremental multivariable analysis to evaluate the effects of baseline plasma Lp(a) and apoC-III on the slope of eGFR over time for subjects with longitudinal data (N = 400). RESULTS: Each two-fold higher plasma Lp(a) level was associated with an additional decline in eGFR by 0.50 mL/min/year in the fully adjusted model (p < 0.001). Baseline Lp(a) levels greater than the atherogenic cut-point of 30 mg/dL were associated with a decline in eGFR by 2.75 mL/min/year compared to 1.01 mL/min/year in subjects with baseline Lp(a) less than 30 mg/dL (p < 0.001). Although each two-fold higher apoC-III level was also associated with statistically significant decline in eGFR over time, as expected the association was attenuated after adjusting for baseline triglycerides, the key lipid intermediary regulated by apoC-III in circulation. CONCLUSIONS: Elevated baseline plasma Lp(a) levels are associated with a decrease in eGFR over time independent of race, lipid medication use, and albuminuria, whereas elevated baseline apoC-III levels are associated with eGFR decline in a triglyceride-dependent fashion.


Asunto(s)
Apolipoproteína C-III/sangre , Diabetes Mellitus Tipo 2/fisiopatología , Tasa de Filtración Glomerular , Lipoproteína(a)/sangre , Estudios de Cohortes , Diabetes Mellitus Tipo 2/sangre , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Triglicéridos/sangre
14.
PLoS Genet ; 7(12): e1002393, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22174694

RESUMEN

Genome-wide association studies (GWAS) have successfully identified loci associated with quantitative traits, such as blood lipids. Deep resequencing studies are being utilized to catalogue the allelic spectrum at GWAS loci. The goal of these studies is to identify causative variants and missing heritability, including heritability due to low frequency and rare alleles with large phenotypic impact. Whereas rare variant efforts have primarily focused on nonsynonymous coding variants, we hypothesized that noncoding variants in these loci are also functionally important. Using the HDL-C gene LIPG as an example, we explored the effect of regulatory variants identified through resequencing of subjects at HDL-C extremes on gene expression, protein levels, and phenotype. Resequencing a portion of the LIPG promoter and 5' UTR in human subjects with extreme HDL-C, we identified several rare variants in individuals from both extremes. Luciferase reporter assays were used to measure the effect of these rare variants on LIPG expression. Variants conferring opposing effects on gene expression were enriched in opposite extremes of the phenotypic distribution. Minor alleles of a common regulatory haplotype and noncoding GWAS SNPs were associated with reduced plasma levels of the LIPG gene product endothelial lipase (EL), consistent with its role in HDL-C catabolism. Additionally, we found that a common nonfunctional coding variant associated with HDL-C (rs2000813) is in linkage disequilibrium with a 5' UTR variant (rs34474737) that decreases LIPG promoter activity. We attribute the gene regulatory role of rs34474737 to the observed association of the coding variant with plasma EL levels and HDL-C. Taken together, the findings show that both rare and common noncoding regulatory variants are important contributors to the allelic spectrum in complex trait loci.


Asunto(s)
HDL-Colesterol/genética , HDL-Colesterol/metabolismo , Lipasa/genética , Lipasa/metabolismo , Metabolismo de los Lípidos/genética , Regiones no Traducidas 5' , Adulto , Anciano , Alelos , HDL-Colesterol/sangre , Femenino , Expresión Génica , Frecuencia de los Genes , Genes Reguladores/genética , Estudio de Asociación del Genoma Completo , Genotipo , Haplotipos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Células Endoteliales de la Vena Umbilical Humana , Humanos , Lipasa/sangre , Masculino , Persona de Mediana Edad , Mutagénesis Sitio-Dirigida , Fenotipo , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas
15.
bioRxiv ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38645260

RESUMEN

Ergothioneine (EGT) is a diet-derived, atypical amino acid that accumulates to high levels in human tissues. Reduced EGT levels have been linked to age-related disorders, including neurodegenerative and cardiovascular diseases, while EGT supplementation is protective in a broad range of disease and aging models in mice. Despite these promising data, the direct and physiologically relevant molecular target of EGT has remained elusive. Here we use a systematic approach to identify how mitochondria remodel their metabolome in response to exercise training. From this data, we find that EGT accumulates in muscle mitochondria upon exercise training. Proteome-wide thermal stability studies identify 3-mercaptopyruvate sulfurtransferase (MPST) as a direct molecular target of EGT; EGT binds to and activates MPST, thereby boosting mitochondrial respiration and exercise training performance in mice. Together, these data identify the first physiologically relevant EGT target and establish the EGT-MPST axis as a molecular mechanism for regulating mitochondrial function and exercise performance.

16.
Artículo en Inglés | MEDLINE | ID: mdl-36746257

RESUMEN

Optimal management of low-density lipoprotein cholesterol (LDL-C) is a central tenet in the primary and secondary prevention of atherosclerotic cardiovascular disease (ASCVD). However, significant residual cardiovascular risk remains despite achieving guideline-directed LDL-C levels, in part due to mixed hyperlipidemia with elevated fasting and non-fasting triglyceride-rich lipoprotein levels. Advances in human genetics have identified angiopoietin-like 3 (ANGPTL3) as a promising therapeutic target to lower cardiovascular risk. Evidence accrued from genetic epidemiological studies demonstrate that ANGPTL3 loss of function is strongly associated with lowering of circulating LDL-C, triglyceride-rich lipoproteins and concurrent risk reduction in development of coronary artery disease. Pharmacological inhibition of ANGPTL3 with monoclonal antibodies, antisense oligonucleotides and gene editing are in development with early studies showing their safety and efficacy in lowering in both, LDL-C and TGs, circumventing a key limitation of previous therapies. Monoclonal antibodies targeting ANGPTL3 are approved for clinical use in homozygous familial hypercholesteremia in USA and Europe. Although promising, future studies focusing on long-term beneficial effect in reducing cardiovascular events with inhibition of ANGPTL3 are warranted.

18.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1866(10): 159002, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34197964

RESUMEN

DHA (docosahexaenoic acid) is an essential fatty acid that is required for the normal development and function of the brain. Because of its inability to synthesize adequate amounts of DHA from the precursors, the brain has to acquire DHA from plasma through the blood brain barrier (BBB). Recent studies demonstrated the presence of a transporter at the BBB that specifically transports DHA into the brain in the form of lysophosphatidylcholine (LPC-DHA). However, the mechanism by which LPC-DHA is generated in the plasma is not known. Our previous studies showed that there are at least three different enzymes - lecithin cholesterol acyltransferase (LCAT), endothelial lipase (EL), and hepatic lipase (HL), which can generate LPC-DHA from sn-2 DHA phosphatidylcholine. Here we determined the relative contributions of these enzymes in the delivery of DHA to the brain by measuring the brain DHA levels in the mice deficient in each of these enzymes. The results show that the brain DHA levels of LCAT-deficient mice or EL-deficient mice were not significantly lower than those of their littermates. However, brain DHA was significantly decreased in HL deficient mice (13.5% of total fatty acids) compared to their littermates (17.1%) (p < 0.002), and further decreased to 8.3% of total fatty acids in mice deficient in both HL and EL. These results suggest that HL activity may be the major source for the generation of LPC-DHA in the plasma necessary for transport into the brain, and EL might contribute to this process in the absence of HL.


Asunto(s)
Encéfalo/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Lipasa/deficiencia , Lipasa/metabolismo , Lisofosfatidilcolinas/metabolismo , Animales , Barrera Hematoencefálica/enzimología , Encéfalo/patología , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/análisis , Humanos , Lipasa/genética , Hígado/enzimología , Lisofosfatidilcolinas/análisis , Masculino , Ratones , Ratones Noqueados , Fosfatidilcolina-Esterol O-Aciltransferasa/genética , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo
20.
J Am Coll Cardiol ; 74(4): 578-586, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31345433

RESUMEN

The incidence of cardiovascular diseases increases with age and is also correlated with increased inflammatory burden. Recently, human genetics provided a new paradigm linking aging, inflammation, and atherosclerotic cardiovascular disease (ASCVD). Next-generation genetic sequencing of whole blood-derived DNA in humans showed that clonal expansion of hematopoietic cells with somatic mutations in leukemogenic genes was associated with age and correlated with increased mortality. This phenomenon, termed clonal hematopoiesis of indeterminate potential (CHIP), was associated with hematologic malignancy as well as ASCVD independently of age and other traditional risk factors. Because the implication of CHIP with ASCVD, genetic loss-of-function studies of Tet2 and Dnmt3a in murine models have supported a mechanistic role for CHIP in promoting vascular disease. Despite the potential contribution of CHIP to myriad cardiovascular and aging-related diseases, the epidemiology and biology surrounding this phenomenon remains incompletely appreciated and understood, especially as applied to clinical practice and prognostication. Here, the authors review this emerging key risk factor, defining its discovery, relationship to cardiovascular diseases, preclinical evidence for causality, and implications for risk prediction and mitigation.


Asunto(s)
Envejecimiento , Enfermedades Cardiovasculares/etiología , Hematopoyesis/genética , Células Madre Hematopoyéticas , Mutación , Aterosclerosis/etiología , Enfermedades Cardiovasculares/genética , Humanos , Neoplasias/complicaciones , Neoplasias/genética , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA