Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 63(1): 369-380, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37988741

RESUMEN

There is unceasing interest toward transformations of phosphine derivatives, which are facilitated by transition metals. We report a facile Pd(II)- and Pt(II)-assisted P-C bond cleavage in a luminescent 2-phenylbenzothiazole-based α-methylaminophosphine (PCN, 1). Specifically, reactions between 1 and [M(COD)Cl2] (M = Pd, Pt; COD = cycloocta-1,5-diene) in different solvents (methylene chloride, acetonitrile, pyridine, toluene) resulted in the formation of PPh2-, captured either as a bridging ligand in binuclear complexes with a {M2(PPh2)2} moiety or as an adduct to COD in [Pt2(PPh2COD)2Cl2]. The heterocyclic part transforms to annulated c-CN+ species with a 1,2-dihydroquinazoline cycle formed. In the presence of pyridine as a base, annulated form c-CN+ destabilizes and undergoes reverse cyclization transforming to deprotonated CN form. Quantum-chemical density functional theory (DFT) calculations predict that a crucial step in the reactions involves proton transfer from the N atom of the amino group of PCN to a neighboring molecule. A combination of high photophysical sensitivity of c-CN+ toward its immediate environment and rich structural capabilities in assembling (c-CN)22+ pairs in different crystal packings in a family of phases with the general formula (c-CN)2[M2(PPh2)2Cl4] allows one to fine-tune the luminescence properties of the latter. The results were rationalized as a variation of π-π intercationic spacings, which tunes the degree of excited-state charge transfer between c-CN+ cations. As a result, compounds with relatively short interplanar π-π-separation between the cations show a stronger charge-transfer-mediated bathochromic shift.

2.
Molecules ; 27(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35744980

RESUMEN

We report synthesis, crystal structure, and photophysical properties of novel 1,3-phosphinoamines based on 4-amino-2,1,3-benzothiadiazole (NH2-btd): Ph2PCH(Ph)NH-btd (1) and Ph2P(E)CH(Ph)NH-btd, (E = O (2α and 2ß·thf), S (3), Se (4)). Chalcogenides 2-4 exhibit bright emissions with a major band at 519-536 nm and a minor band at 840 nm. According to TD-DFT calculations, the first band is attributed to fluorescence, while the second band corresponds to phosphorescence. In the solid state, room temperature quantum yield reaches 93% in the case of the sulphide. The compounds under study feature effects of the molecular environment on the luminescent properties, which manifest themselves in fluorosolvatochromism as well as in a luminescent response to changes in crystal packing and in contributions to aggregation effects. Specifically, transformation of solid 2ß·thf to solvate-free 2ß either by aging or by grinding causes crystal packing changes, and, as a result, a hypsochromic shift of the emission band. Polystyrene films doped with 2 reveal a bathochromic shift upon increasing the mass fraction from 0.2 to 3.3%, which is caused by molecular aggregation effects.


Asunto(s)
Tiadiazoles , Luminiscencia , Tiadiazoles/química
3.
Molecules ; 27(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36500253

RESUMEN

The photoluminescence of Au(I) complexes is generally characterized by long radiative lifetimes owing to the large spin-orbital coupling constant of the Au(I) ion. Herein, we report three brightly emissive Au(I) coordination compounds, 1, 2a, and 2b, that reveal unexpectedly short emission lifetimes of 10-20 ns. Polymorphs 2a and 2b exclusively exhibit fluorescence, which is quite rare for Au(I) compounds, while compound 1 reveals fluorescence as the major radiative pathway, and a minor contribution of a microsecond-scale component. The fluorescent behaviour for 1-2 is rationalized by means of quantum chemical (TD)-DFT calculations, which reveal the following: (1) S0-S1 and S0-T1 transitions mainly exhibit an intraligand nature. (2) The calculated spin-orbital coupling (SOC) between the states is small, which is a consequence of overall small metal contribution to the frontier orbitals. (3) The T1 state features much lower energy than the S1 state (by ca. 7000 cm-1), which hinders the SOC between the states. Thus, the S1 state decays in the form of fluorescence, rather than couples with T1. In the specific case of complex 1, the potential energy surfaces for the S1 and T2 states intersect, while the vibrationally resolved S1-S0 and T2-S0 calculated radiative transitions show substantial overlap. Thus, the microsecond-scale component for complex 1 can stem from the coupling between the S1 and T2 states.


Asunto(s)
Fluorescencia , Teoría Funcional de la Densidad
4.
Molecules ; 26(7)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918327

RESUMEN

We report a study of photoluminescent properties of 4-bromo-7-(3-pyridylamino)-2,1,3-benzothiadiazole (Py-btd) and its novel Lewis adducts: (PyH-btd)2(ZnCl4) and [Cu2Cl2(Py-btd)2{PPO}2]·2C7H8 (PPO = tetraphenyldiphosphine monoxide), whose crystal structure was determined by X-ray diffraction analysis. Py-btd exhibits a lifetime of 9 microseconds indicating its phosphorescent nature, which is rare for purely organic compounds. This phenomenon arises from the heavy atom effect: the presence of a bromine atom in Py-btd promotes mixing of the singlet and triplet states to allow efficient singlet-to-triplet intersystem crossing. The Lewis adducts also feature a microsecond lifetime while emitting in a higher energy range than free Py-btd, which opens up the possibility to color-tune luminescence of benzothiadiazole derivatives.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA