Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 23(15): 19681-8, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26367625

RESUMEN

This paper describes a low pass filter based on photonics crystal fiber (PCF) partial ASE suppression, and its application within a 1.7 µm to 1.8 µm band thulium-doped fiber amplifier (TDFA) and a thulium-doped fiber laser (TDFL). The enlargement of air holes around the doped core region of the PCF resulted in a low-pass filter device that was able to attenuate wavelengths above the conventional long cut-off wavelength. These ensuing long cut-off wavelengths were 1.85 µm and 1.75 µm, and enabled a transmission mechanism that possessed a number of desirable characteristics. The proposed optical low-pass filter was applied within a TDFA and TDFL system. Peak spectrum was observed at around 1.9 µm for conventional TDF lasers, while the proposed TDF laser with PCF setup had fiber laser peak wavelengths measured at downshifted values of 1.74 µm and 1.81 µm.

2.
Opt Express ; 23(4): 3886-900, 2015 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-25836428

RESUMEN

The potential for higher spectral efficiency has increased the interest in all-optical orthogonal frequency division multiplexing (OFDM) systems. However, the sensitivity of all-optical OFDM to fiber non-linearity, which causes nonlinear phase noise, is still a major concern. In this paper, an analytical model for estimating the phase noise due to self-phase modulation (SPM), cross-phase modulation (XPM), and four-wave mixing (FWM) in an all-optical OFDM system is presented. The phase noise versus power, distance, and number of subcarriers is evaluated by implementing the mathematical model using Matlab. In order to verify the results, an all-optical OFDM system, that uses coupler-based inverse fast Fourier transform/fast Fourier transform without any nonlinear compensation, is demonstrated by numerical simulation. The system employs 29 subcarriers; each subcarrier is modulated by a 4-QAM or 16-QAM format with a symbol rate of 25 Gsymbol/s. The results indicate that the phase variance due to FWM is dominant over those induced by either SPM or XPM. It is also shown that the minimum phase noise occurs at -3 dBm and -1 dBm for 4-QAM and 16-QAM, respectively. Finally, the error vector magnitude (EVM) versus subcarrier power and symbol rate is quantified using both simulation and the analytical model. It turns out that both EVM results are in good agreement with each other.

3.
Biomed Signal Process Control ; 80: 104192, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36168586

RESUMEN

Corona disease has become one of the problems and challenges of humankind over the past two years. One of the problems that existed from the first days of this epidemic was clinical symptoms similar to other infectious viruses such as colds and influenza. Therefore, diagnosis of this disease and its coping and treatment approaches is also been difficult. In this study, Attempts has been made to investigate the origin of this disease and the genetic structure of the virus leading to it. For this purpose, signal processing and linear predictive coding approaches were used which are widely used in data compression. A pattern recognition model was presented for the detection and separation of covid samples from the influenza virus case studies. This model, which was based on support vector machine classifier, was tested successfully on several datasets collected from different countries. The obtained results performed on all datasets by more than 98% accuracy. The proposed model, in addition to its good performance accuracy, can be a step forward in quantifying and digitizing medical big data information.

4.
Bioimpacts ; 11(2): 87-99, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33842279

RESUMEN

Introduction: In recent decades, the growing rate of cancer incidence is a big concern for most societies. Due to the genetic origins of cancer disease, its internal structure is necessary for the study of this disease. Methods: In this research, cancer data are analyzed based on DNA sequences. The transition probability of occurring two pairs of nucleotides in DNA sequences has Markovian property. This property inspires the idea of feature dimension reduction of DNA sequence for overcoming the high computational overhead of genes analysis. This idea is utilized in this research based on the Markovian property of DNA sequences. This mapping decreases feature dimensions and conserves basic properties for discrimination of cancerous and non-cancerous genes. Results: The results showed that a non-linear support vector machine (SVM) classifier with RBF and polynomial kernel functions can discriminate selected cancerous samples from non-cancerous ones. Experimental results based on the 10-fold cross-validation and accuracy metrics verified that the proposed method has low computational overhead and high accuracy. Conclusion: The proposed algorithm was successfully tested on related research case studies. In general, a combination of proposed Markovian-based feature reduction and non-linear SVM classifier can be considered as one of the best methods for discrimination of cancerous and non-cancerous genes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA