RESUMEN
Episodic counterfactual thinking (ECT) consists of imagining alternative outcomes to past personal events. Previous research has shown that ECT shares common neural substrates with episodic future thinking (EFT): our ability to imagine possible future events. Both ECT and EFT have been shown to critically depend on the hippocampus, and past research has explored hippocampal engagement as a function of the perceived plausibility of an imagined future event. However, the extent to which the hippocampus is modulated by perceived plausibility during ECT is unknown. In this study, we combine two functional magnetic resonance imaging datasets to investigate whether perceived plausibility modulates hippocampal activity during ECT. Our results indicate that plausibility parametrically modulates hippocampal activity during ECT, and that such modulation is confined to the left anterior portion of the hippocampus. Moreover, our results indicate that this modulation is positive, such that increased activity in the left anterior hippocampus is associated with higher ratings of ECT plausibility. We suggest that neither effort nor difficulty alone can account for these results, and instead suggest possible alternatives to explain the role of the hippocampus during the construction of plausible and implausible ECT.
Asunto(s)
Memoria Episódica , Pensamiento , Imaginación , Hipocampo/diagnóstico por imagen , Lóbulo Temporal , Imagen por Resonancia Magnética/métodosRESUMEN
Episodic counterfactual thoughts (eCFT) consist of imagining alternative outcomes to past experiences. A common sub-class of eCFT-upward eCFT-involves imagining how past negative experiences could have been better, either because one could have done something differently (internal) or because something about the circumstances could have been different (external). Although previous neuroimaging research has shown that the brain's default mode network (DMN) supports upward eCFT, it is unclear how it is differentially recruited during internal versus external upward eCFT. We collected functional magnetic resonance imaging data while participants remembered negative autobiographical memories, generated either internal or external upward eCFT for the memory, and then rated the plausibility, perceived control and difficulty of eCFT generation. Both internal and external eCFT engaged midline regions of cingulate cortex, a central node of the DMN. Most activity differentiating eCFT, however, occurred outside the DMN. External eCFT engaged cuneus, angular gyrus and precuneus, whereas internal eCFT engaged posterior cingulate and precentral gyrus. Angular gyrus and precuneus were additionally sensitive to perceived plausibility of external eCFT, while postcentral gyrus and insula activity scaled with perceived plausibility of internal eCFT. These results highlight the key brain regions that might be involved in cases of maladaptive mental simulations. This article is part of the theme issue 'Thinking about possibilities: mechanisms, ontogeny, functions and phylogeny'.
Asunto(s)
Imaginación , Memoria Episódica , Humanos , Recuerdo Mental , Mapeo Encefálico , Encéfalo , Imagen por Resonancia Magnética/métodosRESUMEN
Moral Foundations Theory (MFT) posits that the human mind contains modules (or "foundations") that are functionally specialized to moralize unique dimensions of the social world: Authority, Loyalty, Purity, Harm, Fairness, and Liberty. Despite this strong claim about cognitive architecture, it is unclear whether neural activity during moral reasoning exhibits this modular structure. Here, we use spatiotemporal partial least squares correlation (PLSC) analyses of fMRI data collected during judgments of foundation-specific violations to investigate whether MFT's cognitive modularity claim extends to the neural level. A mean-centered PLSC analysis returned two latent variables that differentiated between social norm and moral foundation violations, functionally segregated Purity, Loyalty, Physical Harm, and Fairness from the other foundations, and suggested that Authority has a different neural basis than other binding foundations. Non-rotated PLSC analyses confirmed that neural activity distinguished social norm from moral foundation violations, and distinguished individualizing and binding moral foundations if Authority is dropped from the binding foundations. Purity violations were persistently associated with amygdala activity, whereas moral foundation violations more broadly tended to engage the default network. Our results constitute partial evidence for neural modularity and motivate further research on the novel groupings identified by the PLSC analyses.