Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(18): e2216668120, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37094139

RESUMEN

Regulated cellular aggregation is an essential process for development and healing in many animal tissues. In some animals and a few distantly related unicellular species, cellular aggregation is regulated by diffusible chemical cues. However, it is unclear whether regulated cellular aggregation was part of the life cycles of the first multicellular animals and/or their unicellular ancestors. To fill this gap, we investigated the triggers of cellular aggregation in one of animals' closest unicellular living relatives-the filasterean Capsaspora owczarzaki. We discovered that Capsaspora aggregation is induced by chemical cues, as observed in some of the earliest branching animals and other unicellular species. Specifically, we found that calcium ions and lipids present in lipoproteins function together to induce aggregation of viable Capsaspora cells. We also found that this multicellular stage is reversible as depletion of the cues triggers disaggregation, which can be overcome upon reinduction. Our finding demonstrates that chemically regulated aggregation is important across diverse members of the holozoan clade. Therefore, this phenotype was plausibly integral to the life cycles of the unicellular ancestors of animals.


Asunto(s)
Evolución Biológica , Eucariontes , Animales , Eucariontes/genética , Filogenia
2.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798415

RESUMEN

Capsaspora owczarzaki is a protozoan that may both reveal aspects of animal evolution and also curtail the spread of schistosomiasis, a neglected tropical disease. Capsaspora exhibits a chemically regulated aggregative behavior that resembles cellular aggregation in some animals. This behavior may have played a key role in the evolution of animal multicellularity. Additionally, this aggregative behavior may be important for Capsaspora 's ability to colonize the intermediate host of parasitic schistosomes and potentially prevent the spread of schistosomiasis. Both applications demand elucidation of the molecular mechanism of Capsaspora aggregation. Toward this goal, we first determined the necessary chemical properties of lipid cues that activate aggregation. We found that a wide range of abundant zwitterionic lipids induced aggregation, revealing that the aggregative behavior could be activated by diverse lipid-rich conditions. Furthermore, we demonstrated that aggregation in Capsaspora requires clathrin-mediated endocytosis, highlighting the potential significance of endocytosis-linked cellular signaling in recent animal ancestors. Finally, we found that aggregation was initiated by post-translational activation of cell-cell adhesion-not transcriptional regulation of cellular adhesion machinery. Our findings illuminate the chemical, molecular and cellular mechanisms that regulate Capsaspora aggregative behavior-with implications for the evolution of animal multicellularity and the transmission of parasites.

3.
bioRxiv ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38352462

RESUMEN

As symbionts of animals, microbial eukaryotes benefit and harm their hosts in myriad ways. A model microeukaryote (Capsaspora owczarzaki) is a symbiont of Biomphalaria glabrata snails and may prevent transmission of parasitic schistosomes from snails to humans. However, it is unclear which host factors determine Capsaspora's ability to colonize snails. Here, we discovered that Capsaspora forms multicellular aggregates when exposed to snail hemolymph. We identified a molecular cue for aggregation: a hemolymph-derived phosphatidylcholine, which becomes elevated in schistosome-infected snails. Therefore, Capsaspora aggregation may be a response to the physiological state of its host, and it may determine its ability to colonize snails and exclude parasitic schistosomes. Furthermore, Capsaspora is an evolutionary model organism whose aggregation may be ancestral to animals. This discovery, that a prevalent lipid induces Capsaspora multicellularity, suggests that this aggregation phenotype may be ancient. Additionally, the specific lipid will be a useful tool for further aggregation studies.

4.
Mol Cancer Ther ; 19(7): 1520-1529, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32371575

RESUMEN

Despite a growing body of knowledge about the genomic landscape of Ewing sarcoma, translation of basic discoveries into targeted therapies and significant clinical gains has remained elusive. Recent insights have revealed that the oncogenic transcription factor EWS-FLI1 can impact Ewing sarcoma cellular metabolism, regulating expression of 3-phosphoglycerate dehydrogenase (PHGDH), the first enzyme in de novo serine synthesis. Here, we have examined the importance of serine metabolism in Ewing sarcoma tumorigenesis and evaluated the therapeutic potential of targeting serine metabolism in preclinical models of Ewing sarcoma. We show that PHGDH knockdown resulted in decreased Ewing sarcoma cell proliferation, especially under serine limitation, and significantly inhibited xenograft tumorigenesis in preclinical orthotopic models of Ewing sarcoma. In addition, the PHGDH inhibitor NCT-503 caused a dose-dependent decrease in cellular proliferation. Moreover, we report a novel drug combination in which nicotinamide phosphoribosyltransferase (NAMPT) inhibition, which blocks production of the PHGDH substrate NAD+, synergized with NCT-503 to abolish Ewing sarcoma cell proliferation and tumor growth. Furthermore, we show that serine deprivation inhibited Ewing sarcoma cell proliferation and tumorigenesis, indicating that Ewing sarcoma cells depend on exogenous serine in addition to de novo serine synthesis. Our findings suggest that serine metabolism is critical for Ewing sarcoma tumorigenesis, and that targeting metabolic dependencies should be further investigated as a potential therapeutic strategy for Ewing sarcoma. In addition, the combination strategy presented herein may have broader clinical applications in other PHGDH-overexpressing cancers as well.


Asunto(s)
Neoplasias Óseas/patología , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Proteínas de Fusión Oncogénica/metabolismo , Fosfoglicerato-Deshidrogenasa/metabolismo , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteína EWS de Unión a ARN/metabolismo , Sarcoma de Ewing/patología , Serina/metabolismo , Animales , Apoptosis , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Femenino , Humanos , Ratones , Ratones SCID , Proteínas de Fusión Oncogénica/genética , Proteína Proto-Oncogénica c-fli-1/genética , Proteína EWS de Unión a ARN/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Eur J Med Chem ; 120: 313-28, 2016 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-27218860

RESUMEN

Plants of the Amaryllidaceae family produce a large variety of alkaloids and non-basic secondary metabolites, many of which are investigated for their promising anticancer activities. Of these, crinine-type alkaloids based on the 5,10b-ethanophenanthridine ring system were recently shown to be effective at inhibiting proliferation of cancer cells resistant to various pro-apoptotic stimuli and representing tumors with dismal prognoses refractory to current chemotherapy, such as glioma, melanoma, non-small-cell lung, esophageal, head and neck cancers, among others. Using this discovery as a starting point and taking advantage of a concise biomimetic route to the crinine skeleton, a collection of crinine analogues were synthetically prepared and evaluated against cancer cells. The compounds exhibited single-digit micromolar activities and retained this activity in a variety of drug-resistant cancer cell cultures. This investigation resulted in the discovery of new bicyclic ring systems with significant potential in the development of effective clinical cancer drugs capable of overcoming cancer chemotherapy resistance.


Asunto(s)
Alcaloides de Amaryllidaceae/farmacología , Antineoplásicos/química , Resistencia a Antineoplásicos/efectos de los fármacos , Amaryllidaceae/química , Amaryllidaceae/inmunología , Alcaloides de Amaryllidaceae/química , Antineoplásicos/farmacología , Humanos , Extractos Vegetales/farmacología , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA