Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nature ; 565(7741): 587-593, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30700872

RESUMEN

Secondary organic aerosol contributes to the atmospheric particle burden with implications for air quality and climate. Biogenic volatile organic compounds such as terpenoids emitted from plants are important secondary organic aerosol precursors with isoprene dominating the emissions of biogenic volatile organic compounds globally. However, the particle mass from isoprene oxidation is generally modest compared to that of other terpenoids. Here we show that isoprene, carbon monoxide and methane can each suppress the instantaneous mass and the overall mass yield derived from monoterpenes in mixtures of atmospheric vapours. We find that isoprene 'scavenges' hydroxyl radicals, preventing their reaction with monoterpenes, and the resulting isoprene peroxy radicals scavenge highly oxygenated monoterpene products. These effects reduce the yield of low-volatility products that would otherwise form secondary organic aerosol. Global model calculations indicate that oxidant and product scavenging can operate effectively in the real atmosphere. Thus highly reactive compounds (such as isoprene) that produce a modest amount of aerosol are not necessarily net producers of secondary organic particle mass and their oxidation in mixtures of atmospheric vapours can suppress both particle number and mass of secondary organic aerosol. We suggest that formation mechanisms of secondary organic aerosol in the atmosphere need to be considered more realistically, accounting for mechanistic interactions between the products of oxidizing precursor molecules (as is recognized to be necessary when modelling ozone production).

2.
Environ Sci Technol ; 55(23): 15658-15671, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34807606

RESUMEN

The reactions of biogenic volatile organic compounds (BVOC) with the nitrate radicals (NO3) are major night-time sources of organic nitrates and secondary organic aerosols (SOA) in regions influenced by BVOC and anthropogenic emissions. In this study, the formation of gas-phase highly oxygenated organic molecules-organic nitrates (HOM-ON) from NO3-initiated oxidation of a representative monoterpene, ß-pinene, was investigated in the SAPHIR chamber (Simulation of Atmosphere PHotochemistry In a large Reaction chamber). Six monomer (C = 7-10, N = 1-2, O = 6-16) and five accretion product (C = 17-20, N = 2-4, O = 9-22) families were identified and further classified into first- or second-generation products based on their temporal behavior. The time lag observed in the peak concentrations between peroxy radicals containing odd and even number of oxygen atoms, as well as between radicals and their corresponding termination products, provided constraints on the HOM-ON formation mechanism. The HOM-ON formation can be explained by unimolecular or bimolecular reactions of peroxy radicals. A dominant portion of carbonylnitrates in HOM-ON was detected, highlighting the significance of unimolecular termination reactions by intramolecular H-shift for the formation of HOM-ON. A mean molar yield of HOM-ON was estimated to be 4.8% (-2.6%/+5.6%), suggesting significant HOM-ON contributions to the SOA formation.


Asunto(s)
Contaminantes Atmosféricos , Nitratos , Aerosoles , Contaminantes Atmosféricos/análisis , Monoterpenos Bicíclicos , Humanos
3.
Environ Sci Technol ; 54(10): 5973-5979, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32343120

RESUMEN

The oxidation of nitric oxide to nitrogen dioxide by hydroperoxy (HO2) and organic peroxy radicals (RO2) is responsible for the chemical net ozone production in the troposphere and for the regeneration of hydroxyl radicals, the most important oxidant in the atmosphere. In Summer 2014, a field campaign was conducted in the North China Plain, where increasingly severe ozone pollution has been experienced in the last years. Chemical conditions in the campaign were representative for this area. Radical and trace gas concentrations were measured, allowing for calculating the turnover rates of gas-phase radical reactions. Therefore, the importance of heterogeneous HO2 uptake on aerosol could be experimentally determined. HO2 uptake could have suppressed ozone formation at that time because of the competition with gas-phase reactions that produce ozone. The successful reduction of the aerosol load in the North China Plain in the last years could have led to a significant decrease of HO2 loss on particles, so that ozone-forming reactions could have gained importance in the last years. However, the analysis of the measured radical budget in this campaign shows that HO2 aerosol uptake did not impact radical chemistry for chemical conditions in 2014. Therefore, reduced HO2 uptake on aerosol since then is likely not the reason for the increasing number of ozone pollution events in the North China Plain, contradicting conclusions made from model calculations reported in the literature.


Asunto(s)
Ozono/análisis , Aerosoles/análisis , Atmósfera , China , Radical Hidroxilo
4.
Rapid Commun Mass Spectrom ; 33 Suppl 1: 50-59, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-29971833

RESUMEN

RATIONALE: Secondary organic aerosols (SOAs) represent a significant portion of total atmospheric aerosols. They are generated by the oxidation of volatile organic compounds (VOCs), and particularly biogenic VOCs (BVOCs). The analysis of such samples is usually performed by targeted methods that often require time-consuming preparation steps that can induce loss of compounds and/or sample contaminations. METHODS: Recently, untargeted methods using high-resolution mass spectrometry (HRMS) have been successfully employed for a broad characterization of chemicals in SOAs. Herein we propose a new application of the direct analysis in real time (DART) ionization method combined with HRMS to quickly detect several hundred chemicals in SOAs collected on a quartz filter without sample preparation or separation techniques. RESULTS: The reproducibility of measurements was good, with several hundred elemental compositions common to three different replicates. The relative standard deviations of the intensities of the chemical families ranged from 6% to 35%, with sufficient sensitivity to allow the unambiguous detection of 4 ng/mm2 of pinic acid. The presence of oligomers and specific tracers was highlighted by MSn (n ≤ 4) experiments, an achievement that is difficult to attain with other ultrahigh-resolution mass spectrometers. Contributions of this untargeted DART-HRMS method were illustrated by the analysis of fresh and aged SOAs from different gaseous precursors such as limonene, a ß-pinene/limonene mixture or scots pines emissions. CONCLUSIONS: The results show that it is possible to use DART-HRMS for the identification of tracers of specific aging reactions, or for the identification of aerosols from specific biogenic precursors.


Asunto(s)
Aerosoles/análisis , Espectrometría de Masas/métodos , Monoterpenos/análisis , Compuestos Orgánicos Volátiles/análisis , Aerosoles/química , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Monoterpenos/química , Oxidación-Reducción , Compuestos Orgánicos Volátiles/química
5.
Environ Sci Technol ; 53(18): 10676-10684, 2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31418557

RESUMEN

In contrast to summer smog, the contribution of photochemistry to the formation of winter haze in northern mid-to-high latitude is generally assumed to be minor due to reduced solar UV and water vapor concentrations. Our comprehensive observations of atmospheric radicals and relevant parameters during several haze events in winter 2016 Beijing, however, reveal surprisingly high hydroxyl radical oxidation rates up to 15 ppbv/h, which is comparable to the high values reported in summer photochemical smog and is two to three times larger than those determined in previous observations during winter in Birmingham (Heard et al. Geophys. Res. Lett. 2004, 31, (18)), Tokyo (Kanaya et al. J. Geophys. Res.: Atmos. 2007, 112, (D21)), and New York (Ren et al. Atmos. Environ. 2006, 40, 252-263). The active photochemistry facilitates the production of secondary pollutants. It is mainly initiated by the photolysis of nitrous acid and ozonolysis of olefins and maintained by an extremely efficiently radical cycling process driven by nitric oxide. This boosted radical recycling generates fast photochemical ozone production rates that are again comparable to those during summer photochemical smog. The formation of ozone, however, is currently masked by its efficient chemical removal by nitrogen oxides contributing to the high level of wintertime particles. The future emission regulations, such as the reduction of nitrogen oxide emissions, therefore are facing the challenge of reducing haze and avoiding an increase in ozone pollution at the same time. Efficient control strategies to mitigate winter haze in Beijing may require measures similar as implemented to avoid photochemical smog in summer.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Beijing , New York , Fotoquímica , Esmog
6.
Faraday Discuss ; 189: 407-37, 2016 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-27117015

RESUMEN

The analysis of the individual composition of hydrocarbon (VOC) mixtures enables us to transform observed VOC-concentrations into their respective total VOC-reactivity versus OH radicals (RVOC = Σ(kOH+VOCi × [VOCi])). This is particularly useful because local ozone production essentially depends on this single parameter rather than on the details of the underlying hydrocarbon mixture (Klemp et al., Schriften des Forschungszentrums Jülich, Energy & Environment, 2012, 21). The VOC composition also enables us to pin down the major emission source of hydrocarbons in urban areas to be petrol cars with temporarily reduced catalyst efficiency (the so-called cold-start situation) whereas the source of nitrogen oxides (NOx = NO + NO2) is expected to be nowadays dominated by diesel cars. The observations in the vicinity of main roads in German cities show a decrease in the ratio of OH reactivities of VOC and NO2 (RVOC/RNO2) by a factor of 7.5 over the time period 1994-2014. This is larger than the expected decrease of a factor of 2.9 taking estimated trends of VOC and NOx traffic emissions in Germany (Umweltbundesamt Deutschland, National Trend Tables for the German Atmospheric Emission Reporting, 2015), during this time period. The observed reduction in the RVOC/RNO2 ratio leads to a drastic decrease in local ozone production driven by the reduction in hydrocarbons. The analysis reveals that the overall reduction of ozone production benefits from the low decrease of NOx emissions from road traffic which is a consequence of the eventual absence of catalytic converters for nitrogen oxide removal in diesel cars up to now.

7.
Phys Chem Chem Phys ; 17(22): 14796-804, 2015 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-25975709

RESUMEN

The composition of secondary organic aerosols (SOAs) formed by ß-pinene ozonolysis was experimentally investigated in the Juelich aerosol chamber. Partitioning of oxidation products between gas and particles was measured through concurrent concentration measurements in both phases. Partitioning coefficients (Kp) of 2.23 × 10(-5) ± 3.20 × 10(-6) m(3) µg(-1) for nopinone, 4.86 × 10(-4) ± 1.80 × 10(-4) m(3) µg(-1) for apoverbenone, 6.84 × 10(-4) ± 1.52 × 10(-4) m(3) µg(-1) for oxonopinone and 2.00 × 10(-3) ± 1.13 × 10(-3) m(3) µg(-1) for hydroxynopinone were derived, showing higher values for more oxygenated species. The observed Kp values were compared with values predicted using two different semi-empirical approaches. Both methods led to an underestimation of the partitioning coefficients with systematic differences between the methods. Assuming that the deviation between the experiment and the model is due to non-ideality of the mixed solution in particles, activity coefficients of 4.82 × 10(-2) for nopinone, 2.17 × 10(-3) for apoverbenone, 3.09 × 10(-1) for oxonopinone and 7.74 × 10(-1) for hydroxynopinone would result using the vapour pressure estimation technique that leads to higher Kp. We discuss that such large non-ideality for nopinone could arise due to particle phase processes lowering the effective nopinone vapour pressure such as diol- or dimer formation. The observed high partitioning coefficients compared to modelled results imply an underestimation of SOA mass by applying equilibrium conditions.

8.
Nature ; 461(7262): 381-4, 2009 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-19759617

RESUMEN

It has been suggested that volatile organic compounds (VOCs) are involved in organic aerosol formation, which in turn affects radiative forcing and climate. The most abundant VOCs emitted by terrestrial vegetation are isoprene and its derivatives, such as monoterpenes and sesquiterpenes. New particle formation in boreal regions is related to monoterpene emissions and causes an estimated negative radiative forcing of about -0.2 to -0.9 W m(-2). The annual variation in aerosol growth rates during particle nucleation events correlates with the seasonality of monoterpene emissions of the local vegetation, with a maximum during summer. The frequency of nucleation events peaks, however, in spring and autumn. Here we present evidence from simulation experiments conducted in a plant chamber that isoprene can significantly inhibit new particle formation. The process leading to the observed decrease in particle number concentration is linked to the high reactivity of isoprene with the hydroxyl radical (OH). The suppression is stronger with higher concentrations of isoprene, but with little dependence on the specific VOC mixture emitted by trees. A parameterization of the observed suppression factor as a function of isoprene concentration suggests that the number of new particles produced depends on the OH concentration and VOCs involved in the production of new particles undergo three to four steps of oxidation by OH. Our measurements simulate conditions that are typical for forested regions and may explain the observed seasonality in the frequency of aerosol nucleation events, with a lower number of nucleation events during summer compared to autumn and spring. Biogenic emissions of isoprene are controlled by temperature and light, and if the relative isoprene abundance of biogenic VOC emissions increases in response to climate change or land use change, the new particle formation potential may decrease, thus damping the aerosol negative radiative forcing effect.


Asunto(s)
Butadienos/farmacología , Hemiterpenos/metabolismo , Hemiterpenos/farmacología , Pentanos/farmacología , Árboles/efectos de los fármacos , Árboles/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Aerosoles/análisis , Aerosoles/metabolismo , Aire/análisis , Betula/efectos de los fármacos , Betula/metabolismo , Butadienos/análisis , Carbono/análisis , Ambiente Controlado , Fagus/efectos de los fármacos , Fagus/metabolismo , Hemiterpenos/análisis , Radical Hidroxilo/análisis , Radical Hidroxilo/metabolismo , Luz , Monoterpenos/metabolismo , Monoterpenos/farmacología , Oxidación-Reducción , Pentanos/análisis , Picea/efectos de los fármacos , Picea/metabolismo , Estaciones del Año , Temperatura , Factores de Tiempo , Compuestos Orgánicos Volátiles/análisis
9.
Proc Natl Acad Sci U S A ; 109(34): 13503-8, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22869714

RESUMEN

The Multiple Chamber Aerosol Chemical Aging Study (MUCHACHAS) tested the hypothesis that hydroxyl radical (OH) aging significantly increases the concentration of first-generation biogenic secondary organic aerosol (SOA). OH is the dominant atmospheric oxidant, and MUCHACHAS employed environmental chambers of very different designs, using multiple OH sources to explore a range of chemical conditions and potential sources of systematic error. We isolated the effect of OH aging, confirming our hypothesis while observing corresponding changes in SOA properties. The mass increases are consistent with an existing gap between global SOA sources and those predicted in models, and can be described by a mechanism suitable for implementation in those models.


Asunto(s)
Aerosoles/química , Compuestos Orgánicos/química , Atmósfera , Radicales Libres , Radical Hidroxilo , Espectrometría de Masas/métodos , Modelos Químicos , Oxígeno/química , Ozono , Reproducibilidad de los Resultados , Solventes/química , Rayos Ultravioleta
10.
Environ Sci Technol ; 48(11): 6168-76, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24810838

RESUMEN

Formation and evolution of secondary organic aerosols (SOA) from biogenic VOCs influences the Earth's radiative balance. We have examined the photo-oxidation and aging of boreal terpene mixtures in the SAPHIR simulation chamber. Changes in thermal properties and chemical composition, deduced from mass spectrometric measurements, were providing information on the aging of biogenic SOA produced under ambient solar conditions. Effects of precursor mixture, concentration, and photochemical oxidation levels (OH exposure) were evaluated. OH exposure was found to be the major driver in the long term photochemical transformations, i.e., reaction times of several hours up to days, of SOA and its thermal properties, whereas the initial concentrations and terpenoid mixtures had only minor influence. The volatility distributions were parametrized using a sigmoidal function to determine TVFR0.5 (the temperature yielding a 50% particle volume fraction remaining) and the steepness of the volatility distribution. TVFR0.5 increased by 0.3±0.1% (ca. 1 K), while the steepness increased by 0.9±0.3% per hour of 1×10(6) cm(-3) OH exposure. Thus, aging reduces volatility and increases homogeneity of the vapor pressure distribution, presumably because highly volatile fractions become increasingly susceptible to gas phase oxidation, while less volatile fractions are less reactive with gas phase OH.


Asunto(s)
Contaminantes Atmosféricos/química , Terpenos/química , Aerosoles/análisis , Aerosoles/química , Contaminantes Atmosféricos/análisis , Gases/química , Oxidación-Reducción , Procesos Fotoquímicos , Terpenos/análisis , Volatilización
15.
Environ Health Perspect ; 130(2): 27003, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35112925

RESUMEN

BACKGROUND: Secondary organic aerosols (SOAs) formed from anthropogenic or biogenic gaseous precursors in the atmosphere substantially contribute to the ambient fine particulate matter [PM ≤2.5µm in aerodynamic diameter (PM2.5)] burden, which has been associated with adverse human health effects. However, there is only limited evidence on their differential toxicological impact. OBJECTIVES: We aimed to discriminate toxicological effects of aerosols generated by atmospheric aging on combustion soot particles (SPs) of gaseous biogenic (ß-pinene) or anthropogenic (naphthalene) precursors in two different lung cell models exposed at the air-liquid interface (ALI). METHODS: Mono- or cocultures of lung epithelial cells (A549) and endothelial cells (EA.hy926) were exposed at the ALI for 4 h to different aerosol concentrations of a photochemically aged mixture of primary combustion SP and ß-pinene (SOAßPIN-SP) or naphthalene (SOANAP-SP). The internally mixed soot/SOA particles were comprehensively characterized in terms of their physical and chemical properties. We conducted toxicity tests to determine cytotoxicity, intracellular oxidative stress, primary and secondary genotoxicity, as well as inflammatory and angiogenic effects. RESULTS: We observed considerable toxicity-related outcomes in cells treated with either SOA type. Greater adverse effects were measured for SOANAP-SP compared with SOAßPIN-SP in both cell models, whereas the nano-sized soot cores alone showed only minor effects. At the functional level, we found that SOANAP-SP augmented the secretion of malondialdehyde and interleukin-8 and may have induced the activation of endothelial cells in the coculture system. This activation was confirmed by comet assay, suggesting secondary genotoxicity and greater angiogenic potential. Chemical characterization of PM revealed distinct qualitative differences in the composition of the two secondary aerosol types. DISCUSSION: In this study using A549 and EA.hy926 cells exposed at ALI, SOA compounds had greater toxicity than primary SPs. Photochemical aging of naphthalene was associated with the formation of more oxidized, more aromatic SOAs with a higher oxidative potential and toxicity compared with ß-pinene. Thus, we conclude that the influence of atmospheric chemistry on the chemical PM composition plays a crucial role for the adverse health outcome of emissions. https://doi.org/10.1289/EHP9413.


Asunto(s)
Contaminantes Atmosféricos , Hollín , Aerosoles/análisis , Anciano , Envejecimiento , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Células Endoteliales/química , Células Endoteliales/metabolismo , Humanos , Pulmón/metabolismo , Material Particulado/análisis
16.
Environ Int ; 166: 107366, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35763991

RESUMEN

The health effects of exposure to secondary organic aerosols (SOAs) are still limited. Here, we investigated and compared the toxicities of soot particles (SP) coated with ß-pinene SOA (SOAßPin-SP) and SP coated with naphthalene SOA (SOANap-SP) in a human bronchial epithelial cell line (BEAS-2B) residing at the air-liquid interface. SOAßPin-SP mostly contained oxygenated aliphatic compounds from ß-pinene photooxidation, whereas SOANap-SP contained a significant fraction of oxygenated aromatic products under similar conditions. Following exposure, genome-wide transcriptome responses showed an Nrf2 oxidative stress response, particularly for SOANap-SP. Other signaling pathways, such as redox signaling, inflammatory signaling, and the involvement of matrix metalloproteinase, were identified to have a stronger impact following exposure to SOANap-SP. SOANap-SP also induced a stronger genotoxicity response than that of SOAßPin-SP. This study elucidated the mechanisms that govern SOA toxicity and showed that, compared to SOAs derived from a typical biogenic precursor, SOAs from a typical anthropogenic precursor have higher toxicological potency, which was accompanied with the activation of varied cellular mechanisms, such as aryl hydrocarbon receptor. This can be attributed to the difference in chemical composition; specifically, the aromatic compounds in the naphthalene-derived SOA had higher cytotoxic potential than that of the ß-pinene-derived SOA.

20.
ACS Earth Space Chem ; 5(4): 785-800, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33889791

RESUMEN

Alkyl nitrate (AN) and secondary organic aerosol (SOA) from the reaction of nitrate radicals (NO3) with isoprene were observed in the Simulation of Atmospheric PHotochemistry In a large Reaction (SAPHIR) chamber during the NO3Isop campaign in August 2018. Based on 15 day-long experiments under various reaction conditions, we conclude that the reaction has a nominally unity molar AN yield (observed range 90 ± 40%) and an SOA mass yield of OA + organic nitrate aerosol of 13-15% (with ∼50 µg m-3 inorganic seed aerosol and 2-5 µg m-3 total organic aerosol). Isoprene (5-25 ppb) and oxidant (typically ∼100 ppb O3 and 5-25 ppb NO2) concentrations and aerosol composition (inorganic and organic coating) were varied while remaining close to ambient conditions, producing similar AN and SOA yields under all regimes. We observe the formation of dinitrates upon oxidation of the second double bond only once the isoprene precursor is fully consumed. We determine the bulk partitioning coefficient for ANs (K p ∼ 10-3 m3 µg-1), indicating an average volatility corresponding to a C5 hydroxy hydroperoxy nitrate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA