Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
FASEB J ; 35(10): e21939, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34549824

RESUMEN

The unfolded protein response (UPR) is associated with hepatic metabolic function, yet it is not well understood how endoplasmic reticulum (ER) disturbance might influence metabolic homeostasis. Here, we describe the physiological function of Cysteine-rich with EGF-like domains 2 (Creld2), previously characterized as a downstream target of the ER-stress signal transducer Atf6. To this end, we generated Creld2-deficient mice and induced UPR by injection of tunicamycin. Creld2 augments protein folding and creates an interlink between the UPR axes through its interaction with proteins involved in the cellular stress response. Thereby, Creld2 promotes tolerance to ER stress and recovery from acute stress. Creld2-deficiency leads to a dysregulated UPR and causes the development of hepatic steatosis during ER stress conditions. Moreover, Creld2-dependent enhancement of the UPR assists in the regulation of energy expenditure. Furthermore, we observed a sex dimorphism in human and mouse livers with only male patients showing an accumulation of CRELD2 protein during the progression from non-alcoholic fatty liver disease to non-alcoholic steatohepatitis and only male Creld2-deficient mice developing hepatic steatosis upon aging. These results reveal a Creld2 function at the intersection between UPR and metabolic homeostasis and suggest a mechanism in which chronic ER stress underlies fatty liver disease in males.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Homeostasis , Hígado/metabolismo , Respuesta de Proteína Desplegada , Envejecimiento , Animales , Progresión de la Enfermedad , Estrés del Retículo Endoplásmico , Hígado Graso , Humanos , Masculino , Ratones , Enfermedad del Hígado Graso no Alcohólico
2.
Biochemistry ; 54(27): 4163-6, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26115234

RESUMEN

CCL19 and CCL21 are chemokines involved in the trafficking of immune cells, particularly within the lymphatic system, through activation of CCR7. Concurrent expression of PSGL-1 and CCR7 in naive T-cells enhances recruitment of these cells to secondary lymphoid organs by CCL19 and CCL21. Here the solution structure of CCL19 is reported. It contains a canonical chemokine domain. Chemical shift mapping shows the N-termini of PSGL-1 and CCR7 have overlapping binding sites for CCL19 and binding is competitive. Implications for the mechanism of PSGL-1's enhancement of resting T-cell recruitment are discussed.


Asunto(s)
Quimiocina CCL19/química , Quimiocina CCL19/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores CCR7/metabolismo , Sitios de Unión , Humanos , Modelos Moleculares , Conformación Proteica
3.
Elife ; 132024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526524

RESUMEN

During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.


Asunto(s)
Hematopoyesis , Macrófagos , Animales , Ratones , Hematopoyesis/genética , Células Madre Hematopoyéticas , Diferenciación Celular , Eritropoyesis , Hígado , Nicho de Células Madre/genética
4.
Elife ; 112022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36508246

RESUMEN

The centrosome decides which branch extending from the body of microglia will successfully engulf and clear away dead neurons.


Asunto(s)
Centrosoma , Microglía , Neuronas/fisiología , Fagocitosis/fisiología
5.
Front Cell Dev Biol ; 10: 943041, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36016652

RESUMEN

Navigation of dendritic cells (DCs) from the site of infection to lymphoid organs is guided by concentration gradients of CCR7 ligands. How cells interpret chemokine gradients and how they couple directional sensing to polarization and persistent chemotaxis has remained largely elusive. Previous experimental systems were limited in the ability to control fast de novo formation of the final gradient slope, long-lasting stability of the gradient and to expose cells to dynamic stimulation. Here, we used a combination of microfluidics and quantitative in vitro live cell imaging to elucidate the chemotactic sensing strategy of DCs. The microfluidic approach allows us to generate soluble gradients with high spatio-temporal precision and to analyze actin dynamics, cell polarization, and persistent directional migration in both static and dynamic environments. We demonstrate that directional persistence of DC migration requires steady-state characteristics of the soluble gradient instead of temporally rising CCL19 concentration, implying that spatial sensing mechanisms control chemotaxis of DCs. Kymograph analysis of actin dynamics revealed that the presence of the CCL19 gradient is essential to stabilize leading edge protrusions in DCs and to determine directionality, since both cytoskeletal polarization and persistent chemotaxis are abrogated in the range of seconds when steady-state gradients are perturbed. In contrast to Dictyostelium amoeba, DCs are unable to decode oscillatory stimulation of soluble chemokine traveling waves into a directional response toward the wave source. These findings are consistent with the notion that DCs do not employ adaptive temporal sensing strategies that discriminate temporally increasing and decreasing chemoattractant concentrations in our setting. Taken together, in our experimental system DCs do not depend on increasing absolute chemokine concentration over time to induce persistent migration and do not integrate oscillatory stimulation. The observed capability of DCs to migrate with high directional persistence in stable gradients but not when subjected to periodic temporal cues, identifies spatial sensing as a key requirement for persistent chemotaxis of DCs.

6.
J Cell Biol ; 221(12)2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36214847

RESUMEN

Centrosomes play a crucial role during immune cell interactions and initiation of the immune response. In proliferating cells, centrosome numbers are tightly controlled and generally limited to one in G1 and two prior to mitosis. Defects in regulating centrosome numbers have been associated with cell transformation and tumorigenesis. Here, we report the emergence of extra centrosomes in leukocytes during immune activation. Upon antigen encounter, dendritic cells pass through incomplete mitosis and arrest in the subsequent G1 phase leading to tetraploid cells with accumulated centrosomes. In addition, cell stimulation increases expression of polo-like kinase 2, resulting in diploid cells with two centrosomes in G1-arrested cells. During cell migration, centrosomes tightly cluster and act as functional microtubule-organizing centers allowing for increased persistent locomotion along gradients of chemotactic cues. Moreover, dendritic cells with extra centrosomes display enhanced secretion of inflammatory cytokines and optimized T cell responses. Together, these results demonstrate a previously unappreciated role of extra centrosomes for regular cell and tissue homeostasis.


Asunto(s)
Centrosoma , Células Dendríticas , Puntos de Control del Ciclo Celular , Movimiento Celular , Centrosoma/metabolismo , Quimiotaxis , Citocinas/metabolismo , Células Dendríticas/metabolismo , Humanos , Centro Organizador de los Microtúbulos , Mitosis , Proteínas Serina-Treonina Quinasas/metabolismo , Linfocitos T/metabolismo
7.
Front Cell Dev Biol ; 9: 635511, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33634136

RESUMEN

The organization of microtubule arrays in immune cells is critically important for a properly operating immune system. Leukocytes are white blood cells of hematopoietic origin, which exert effector functions of innate and adaptive immune responses. During these processes the microtubule cytoskeleton plays a crucial role for establishing cell polarization and directed migration, targeted secretion of vesicles for T cell activation and cellular cytotoxicity as well as the maintenance of cell integrity. Considering this large spectrum of distinct effector functions, leukocytes require flexible microtubule arrays, which timely and spatially reorganize allowing the cells to accommodate their specific tasks. In contrast to other specialized cell types, which typically nucleate microtubule filaments from non-centrosomal microtubule organizing centers (MTOCs), leukocytes mainly utilize centrosomes for sites of microtubule nucleation. Yet, MTOC localization as well as microtubule organization and dynamics are highly plastic in leukocytes thus allowing the cells to adapt to different environmental constraints. Here we summarize our current knowledge on microtubule organization and dynamics during immune processes and how these microtubule arrays affect immune cell effector functions. We particularly highlight emerging concepts of microtubule involvement during maintenance of cell shape and physical coherence.

8.
Mol Cancer ; 9: 116, 2010 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-20492666

RESUMEN

BACKGROUND: p27Kip1 (p27) is an important negative regulator of the cell cycle and a putative tumor suppressor. The finding that a spontaneous germline frameshift mutation in Cdkn1b (encoding p27) causes the MENX multiple endocrine neoplasia syndrome in the rat provided the first evidence that Cdkn1b is a tumor susceptibility gene for endocrine tumors. Noteworthy, germline p27 mutations were also identified in human patients presenting with endocrine tumors. At present, it is not clear which features of p27 are crucial for this tissue-specific tumor predisposition in both rats and humans. It was shown that the MENX-associated Cdkn1b mutation causes reduced expression of the encoded protein, but the molecular mechanisms are unknown. To better understand the role of p27 in tumor predisposition and to characterize the MENX animal model at the molecular level, a prerequisite for future preclinical studies, we set out to assess the functional properties of the MENX-associated p27 mutant protein (named p27fs177) in vitro and in vivo. RESULTS: In vitro, p27fs177 retains some properties of the wild-type p27 (p27wt) protein: it localizes to the nucleus; it interacts with cyclin-dependent kinases and, to lower extent, with cyclins. In contrast to p27wt, p27fs177 is highly unstable and rapidly degraded in every phase of the cell-cycle, including quiescence. It is in part degraded by Skp2-dependent proteasomal proteolysis, similarly to p27wt. Photobleaching studies showed reduced motility of p27fs177 in the nucleus compared to p27wt, suggesting that in this compartment p27fs177 is part of a multi-protein complex, likely together with the degradation machinery. Studies of primary rat newborn fibroblasts (RNF) established from normal and MENX-affected littermates confirmed the rapid degradation of p27fs177 in vivo which can be rescued by Bortezomib (proteasome inhibitor drug). Overexpression of the negative regulators microRNA-221/222 plays no role in regulating the amount of p27fs177 in RNFs and rat tissues. CONCLUSION: Our findings show that reduced p27 levels, not newly acquired properties, trigger tumor formation in rats, similarly to what has been observed in mice. The molecular characteristics of p27fs177 establish MENX as a useful preclinical model to evaluate compounds that inhibit p27 degradation for their efficacy against endocrine tumors.


Asunto(s)
Predisposición Genética a la Enfermedad , Neoplasia Endocrina Múltiple/genética , Neoplasia Endocrina Múltiple/metabolismo , Animales , Western Blotting , Células Cultivadas , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoprecipitación , Ratones , Mutación , Ratas , Transfección
9.
J Cell Biol ; 219(6)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32379884

RESUMEN

Cells navigating through complex tissues face a fundamental challenge: while multiple protrusions explore different paths, the cell needs to avoid entanglement. How a cell surveys and then corrects its own shape is poorly understood. Here, we demonstrate that spatially distinct microtubule dynamics regulate amoeboid cell migration by locally promoting the retraction of protrusions. In migrating dendritic cells, local microtubule depolymerization within protrusions remote from the microtubule organizing center triggers actomyosin contractility controlled by RhoA and its exchange factor Lfc. Depletion of Lfc leads to aberrant myosin localization, thereby causing two effects that rate-limit locomotion: (1) impaired cell edge coordination during path finding and (2) defective adhesion resolution. Compromised shape control is particularly hindering in geometrically complex microenvironments, where it leads to entanglement and ultimately fragmentation of the cell body. We thus demonstrate that microtubules can act as a proprioceptive device: they sense cell shape and control actomyosin retraction to sustain cellular coherence.


Asunto(s)
Actomiosina/metabolismo , Movimiento Celular/fisiología , Células Dendríticas/citología , Centro Organizador de los Microtúbulos/metabolismo , Microtúbulos/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Adhesión Celular/fisiología , Forma de la Célula/fisiología , Células Cultivadas , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Centro Organizador de los Microtúbulos/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Nocodazol/farmacología , Unión Proteica , Factores de Intercambio de Guanina Nucleótido Rho/deficiencia , Factores de Intercambio de Guanina Nucleótido Rho/genética
10.
Science ; 351(6269): 186-90, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26657283

RESUMEN

The addition of polysialic acid to N- and/or O-linked glycans, referred to as polysialylation, is a rare posttranslational modification that is mainly known to control the developmental plasticity of the nervous system. Here we show that CCR7, the central chemokine receptor controlling immune cell trafficking to secondary lymphatic organs, carries polysialic acid. This modification is essential for the recognition of the CCR7 ligand CCL21. As a consequence, dendritic cell trafficking is abrogated in polysialyltransferase-deficient mice, manifesting as disturbed lymph node homeostasis and unresponsiveness to inflammatory stimuli. Structure-function analysis of chemokine-receptor interactions reveals that CCL21 adopts an autoinhibited conformation, which is released upon interaction with polysialic acid. Thus, we describe a glycosylation-mediated immune cell trafficking disorder and its mechanistic basis.


Asunto(s)
Quimiocina CCL21/metabolismo , Quimiotaxis , Células Dendríticas/fisiología , Ganglios Linfáticos/fisiología , Procesamiento Proteico-Postraduccional , Receptores CCR7/metabolismo , Ácidos Siálicos/metabolismo , Animales , Células de la Médula Ósea/fisiología , Glicosilación , Ligandos , Ganglios Linfáticos/citología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes
11.
Nat Cell Biol ; 11(9): 1109-15, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19684577

RESUMEN

Kinetochores are large multiprotein complexes that mediate chromosome segregation in all eukaryotes by dynamically connecting specialized chromosome regions, termed centromeres, to the plus-ends of spindle microtubules. Even the relatively simple kinetochores of the budding yeast Saccharomyces cerevisiae consist of more than 80 proteins, making analysis of their respective roles a daunting task. Here, we have developed a system that allows us to artificially recruit proteins to DNA sequences and determine whether they can provide any aspect of kinetochore function in vivo. We show that artificial recruitment of the microtubule-binding Dam1 complex to a plasmid lacking any centromere DNA is sufficient to confer mitotic stabilization. The Dam1-based artificial kinetochores are able to attach, bi-orient and segregate mini-chromosomes on the mitotic spindle, and they bypass the requirement for essential DNA-binding components of natural kinetochores. Thus, we have built a simplified chromosome segregation system by directly recruiting a microtubule force-transducing component to DNA.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromosomas Fúngicos/metabolismo , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/citología
12.
Science ; 314(5802): 1148-50, 2006 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-17110579

RESUMEN

N-linked protein glycosylation is found in all domains of life. In eukaryotes, it is the most abundant protein modification of secretory and membrane proteins, and the process is coupled to protein translocation and folding. We found that in bacteria, N-glycosylation can occur independently of the protein translocation machinery. In an in vitro assay, bacterial oligosaccharyltransferase glycosylated a folded endogenous substrate protein with high efficiency and folded bovine ribonuclease A with low efficiency. Unfolding the eukaryotic substrate greatly increased glycosylation. We propose that in the bacterial system, glycosylation sites are located in flexible parts of folded proteins, whereas the eukaryotic cotranslational glycosylation evolved to a mechanism presenting the substrate in a flexible form before folding.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glicoproteínas/metabolismo , Pliegue de Proteína , Secuencia de Aminoácidos , Animales , Campylobacter jejuni , Bovinos , Escherichia coli , Glicosilación , Hexosiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Transporte de Proteínas , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA