Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Emerg Infect Dis ; 29(6): 1280-1283, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37209696

RESUMEN

Microscopy of mummified visceral tissue from a Medici family member in Italy identified a potential blood vessel containing erythrocytes. Giemsa staining, atomic force microscopy, and immunohistochemistry confirmed Plasmodium falciparum inside those erythrocytes. Our results indicate an ancient Mediterranean presence of P. falciparum, which remains responsible for most malaria deaths in Africa.


Asunto(s)
Malaria Falciparum , Malaria , Humanos , Malaria/epidemiología , Malaria Falciparum/epidemiología , Plasmodium falciparum , Microscopía/métodos , Italia/epidemiología
2.
J Nutr ; 153(9): 2598-2611, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37423385

RESUMEN

BACKGROUND: Donor human milk banks use Holder pasteurization (HoP; 62.5°C, 30 min) to reduce pathogens in donor human milk, but this process damages some bioactive milk proteins. OBJECTIVES: We aimed to determine minimal parameters for high-pressure processing (HPP) to achieve >5-log reductions of relevant bacteria in human milk and how these parameters affect an array of bioactive proteins. METHODS: Pooled raw human milk inoculated with relevant pathogens (Enterococcus faecium, Staphylococcus aureus, Listeria monocytogenes, Cronobacter sakazakii) or microbial quality indicators (Bacillus subtilis and Paenibacillus spp. spores) at 7 log CFU/mL was processed at 300-500 MPa at 16-19°C (due to adiabatic heating) for 1-9 min. Surviving microbes were enumerated using standard plate counting methods. For raw milk, and HPP-treated and HoP-treated milk, the immunoreactivity of an array of bioactive proteins was assessed via ELISA and the activity of bile salt-stimulated lipase (BSSL) was determined via a colorimetric substrate assay. RESULTS: Treatment at 500 MPa for 9 min resulted in >5-log reductions of all vegetative bacteria, but <1-log reduction in B. subtilis and Paenibacillus spores. HoP decreased immunoglobulin A (IgA), immunoglobulin M (IgM), immunoglobulin G, lactoferrin, elastase and polymeric immunoglobulin receptor (PIGR) concentrations, and BSSL activity. The treatment at 500 MPa for 9 min preserved more IgA, IgM, elastase, lactoferrin, PIGR, and BSSL than HoP. HoP and HPP treatments up to 500 MPa for 9 min caused no losses in osteopontin, lysozyme, α-lactalbumin and vascular endothelial growth factor. CONCLUSION: Compared with HoP, HPP at 500 MPa for 9 min provides >5-log reduction of tested vegetative neonatal pathogens with improved retention of IgA, IgM, lactoferrin, elastase, PIGR, and BSSL in human milk.


Asunto(s)
Lactoferrina , Leche Humana , Recién Nacido , Humanos , Leche Humana/microbiología , Viabilidad Microbiana , Factor A de Crecimiento Endotelial Vascular , Pasteurización/métodos , Inmunoglobulina A , Inmunoglobulina M , Elastasa Pancreática
3.
Crit Rev Food Sci Nutr ; : 1-20, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37504497

RESUMEN

Partial digestion of milk proteins leads to the formation of numerous bioactive peptides. Previously, our research team thoroughly examined the decades of existing literature on milk bioactive peptides across species to construct the milk bioactive peptide database (MBPDB). Herein, we provide a comprehensive update to the data within the MBPDB and a review of the current state of research for each functional category from in vitro to animal and clinical studies, including angiotensin-converting enzyme (ACE)-inhibitory, antimicrobial, antioxidant, dipeptidyl peptidase (DPP)-IV inhibitory, opioid, anti-inflammatory, immunomodulatory, calcium absorption and bone health and anticancer activity. This information will help drive future research on the bioactivities of milk peptides.

4.
J Nutr ; 152(2): 429-438, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-34850069

RESUMEN

BACKGROUND: Bovine milk κ-casein-derived caseinomacropeptide (CMP) is produced in large quantities during cheese-making and has various biological activities demonstrated via in vitro and in vivo experiments. Previous studies examined protein degradation and peptide release after casein or whey protein consumption. However, whether purified intact CMP that is partially glycosylated survives intact to its presumed site of bioactivity within the gut remains unknown. OBJECTIVES: The aim of this study was to determine the extent to which purified intact CMP (including glycosylated forms) is digested into peptide fragments within the jejunum of healthy human adults after consumption. METHODS: Jejunal fluids were collected from 3 adult participants (2 men and 1 woman, age: 27 ± 7 y; BMI: 23 ± 1 kg/m2) for 3 h after consuming 37.5 g of purified intact CMP. CMP and CMP-derived peptides were isolated from the collected jejunal fluids by ethanol precipitation and solid-phase extraction and identified by MS-based top-down glycopeptidomics. Relative abundances of CMP and CMP-derived peptides were compared qualitatively between the feed and the jejunal fluids. RESULTS: Intact CMP was dominant in feeding material, accounting for 90% of the total ion abundance of detected peptides, and in very low abundance (<2%) in the jejunal fluids. CMP-derived fragment peptides ranging from 11 to 20 amino acids in length were predominant (accounting for 68-88% of the total peptide ion abundance) in jejunal fluids during 1-3 h post consumption. CONCLUSIONS: This study demonstrates that intact CMP (including glycosylated forms) is mostly digested in the human jejunum, releasing a wide array of CMP-derived peptide fragments. Some of the CMP-derived peptides with high homology to known bioactive peptides consistently survived across 3 h of digestion. Therefore, future research should examine the biological effects of the partially digested form-the CMP-derived fragments-rather than those of intact CMP.


Asunto(s)
Caseínas , Yeyuno , Adulto , Caseínas/química , Femenino , Humanos , Yeyuno/metabolismo , Masculino , Fragmentos de Péptidos , Péptidos/metabolismo , Adulto Joven
5.
Pediatr Res ; 90(2): 335-340, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33214672

RESUMEN

BACKGROUND: Potentially, orally administered antibodies specific to enteric pathogens could be administered to infants to prevent diarrheal infections, particularly in developing countries where diarrhea is a major problem. However, to prevent infection, such antibodies would need to resist degradation within the gastrointestinal tract. METHODS: Palivizumab, a recombinant antibody specific to respiratory syncytial virus (RSV), was used in this study as a model for examining the digestion of neutralizing antibodies to enteric pathogens in infants. The survival of this recombinant IgG1 across digestion in 11 infants was assayed via an anti-idiotype ELISA and RSV F protein-specific ELISA. Concentrations were controlled for any dilution or concentration that occurred in the digestive system using mass spectrometry-based quantification of co-administered, orally supplemented, indigestible polyethylene glycol (PEG-28). RESULTS: Binding activity of Palivizumab IgG1 decreased (26-99%) across each phase of in vivo digestion as measured by both anti-idiotype and RSV F protein-specific ELISAs. CONCLUSION: Antibodies generated for passive protection of the infant gastrointestinal tract from pathogens will need to be more resistant to digestion than the model antibody fed to infants in this study, or provided in higher doses to be most effective. IMPACT: Binding activity of palivizumab IgG1 decreased (26-99%) across each phase of in vivo infant digestion as measured by both anti-idiotype and RSV F protein-specific ELISAs. Palivizumab was likely degraded by proteases and changes in pH introduced in the gut. Antibodies generated for passive protection of the infant gastrointestinal tract from pathogens will need to be more resistant to digestion than the model antibody fed to infants in this study, or provided in higher doses to be most effective. The monoclonal antibody IgG1 tested was not stable across the infant gastrointestinal tract. The observation of palivizumab reduction was unlikely due to dilution in the gastrointestinal tract. The results of this work hint that provision of antibody could be effective in preventing enteric pathogen infection in infants. Orally delivered recombinant antibodies will need to either be dosed at high levels to compensate for digestive losses or be engineered to better resist digestion. Provision of enteric pathogen-specific recombinant antibodies to at-risk infants could provide a new and previously unexplored pathway to reducing the infection in infants. The strategy of enteric recombinant antibodies deserves more investigation throughout medicine as a novel means for treatment of enteric disease targets.


Asunto(s)
Antivirales/metabolismo , Digestión , Tracto Gastrointestinal/metabolismo , Palivizumab/metabolismo , Infecciones por Virus Sincitial Respiratorio/prevención & control , Virus Sincitiales Respiratorios/inmunología , Administración Oral , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/metabolismo , Antivirales/administración & dosificación , Estabilidad de Medicamentos , Ensayo de Inmunoadsorción Enzimática , Femenino , Interacciones Huésped-Patógeno , Humanos , Recién Nacido , Masculino , Palivizumab/administración & dosificación , Estabilidad Proteica , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitiales Respiratorios/patogenicidad
6.
Anal Bioanal Chem ; 410(1): 45-56, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29164281

RESUMEN

The estimation of post-mortem interval (PMI) is a crucial part for investigations of crime and untimely deaths in forensic science. However, standard methods of PMI estimation are easily confounded by extenuating circumstances and/or environmental factors. Therefore, a panel of PMI markers obtained from a more acceptable and accurate method is necessary to definitely determine time of death. Saliva, one of the vital fluids encountered at crime scenes, contains various glycoproteins that are highly affected by biochemical environment. Here, we investigated saliva N-glycans between live and dead rats to determine the alteration of N-glycans using an animal model system because of the limitation of saliva collection from recently deceased humans. Rat saliva samples were collected both before and after death. N-Glycans were enzymatically released by PNGase F without any glycoprotein extraction. Released native glycans were purified and enriched by PGC-SPE. About 100 N-glycans were identified, profiled, and structurally elucidated by nano LC/MS and tandem MS. Sialylated N-glycans were exclusively present in abundance in live rat saliva whereas non-sialylated N-glycans including LacdiNAc disaccharides were detected in high level following death. Through in-depth investigations using quantitative comparison and statistical analysis, 14 N-glycans that significantly changed after death were identified as the potential marker candidates for PMI estimation. To the best of our knowledge, this is the first study to monitor the post-mortem changes of saliva glycosylation, with obvious forensic applications.


Asunto(s)
Medicina Legal/métodos , Polisacáridos/análisis , Saliva/química , Espectrometría de Masas en Tándem/métodos , Animales , Autopsia , Cromatografía Liquida/métodos , Glicosilación , Humanos , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/química , Cambios Post Mortem , Ratas , Ratas Sprague-Dawley
7.
Mol Cell Proteomics ; 13(1): 30-48, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24085812

RESUMEN

Small cell lung cancer (SCLC) is an aggressive type of lung cancer, and the detection of SCLCs at an early stage is necessary for successful therapy and for improving cancer survival rates. Fucosylation is one of the most common glycosylation-based modifications. Increased levels of fucosylation have been reported in a number of pathological conditions, including cancers. In this study, we aimed to identify and validate the aberrant and selective fucosylated glycoproteins in the sera of patients with SCLC. Fucosylated glycoproteins were enriched by the Aleuria aurantia lectin column after serum albumin and IgG depletion. In a narrowed down and comparative data analysis of both label-free proteomics and isobaric peptide-tagging chemistry iTRAQ approaches, the fucosylated glycoproteins were identified as up- or down-regulated in the sera of limited disease and extensive disease stage patients with SCLC. Verification was performed by multiple reaction monitoring-mass spectrometry to select reliable markers. Four fucosylated proteins, APCS, C9, SERPINA4, and PON1, were selected and subsequently validated by hybrid A. aurantia lectin ELISA (HLE) and Western blotting. Compared with Western blotting, the HLE analysis of these four proteins produced more optimal diagnostic values for SCLC. The PON1 protein levels were significantly reduced in the sera of patients with SCLC, whereas the fucosylation levels of PON1 were significantly increased. Fucosylated PON1 exhibited an area under curve of 0.91 for the extensive disease stage by HLE, whereas the PON1 protein levels produced an area under curve of 0.82 by Western blot. The glycan structural analysis of PON1 by MS/MS identified a biantennary fucosylated glycan modification consisting of a core + 2HexNAc + 1Fuc at increased levels in the sera of patients with SCLC. In addition, the PON1 levels were decreased in the sera of the Lewis lung carcinoma lung cancer mouse model that we examined. Our data suggest that fucosylated protein biomarkers, such as PON1, and their fucosylation levels and patterns can serve as diagnostic and prognostic serological markers for SCLC.


Asunto(s)
Arildialquilfosfatasa/sangre , Glicoproteínas/sangre , Proteómica , Carcinoma Pulmonar de Células Pequeñas/genética , Adulto , Anciano , Arildialquilfosfatasa/biosíntesis , Biomarcadores de Tumor/sangre , Femenino , Regulación Neoplásica de la Expresión Génica , Glicosilación , Humanos , Lectinas/metabolismo , Masculino , Persona de Mediana Edad , Carcinoma Pulmonar de Células Pequeñas/sangre , Carcinoma Pulmonar de Células Pequeñas/patología , Espectrometría de Masas en Tándem
8.
Angew Chem Int Ed Engl ; 54(25): 7318-22, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25968933

RESUMEN

A novel bioinspired strategy for protein nanoparticle (NP) synthesis to achieve pH-responsive drug release exploits the pH-dependent changes in the coordination stoichiometry of iron(III)-3,4-dihydroxyphenylalanine (DOPA) complexes, which play a major cross-linking role in mussel byssal threads. Doxorubicin-loaded polymeric NPs that are based on Fe(III)-DOPA complexation were thus synthesized with a DOPA-modified recombinant mussel adhesive protein through a co-electrospraying process. The release of doxorubicin was found to be predominantly governed by a change in the structure of the Fe(III)-DOPA complexes induced by an acidic pH value. It was also demonstrated that the fabricated NPs exhibited effective cytotoxicity towards cancer cells through efficient cellular uptake and cytosolic release. Therefore, it is anticipated that Fe(III)-DOPA complexation can be successfully utilized as a new design principle for pH-responsive NPs for diverse controlled drug-delivery applications.


Asunto(s)
Bivalvos/química , Preparaciones de Acción Retardada/química , Dihidroxifenilalanina/química , Compuestos Férricos/química , Nanopartículas/química , Proteínas/química , Animales , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/farmacología , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Neoplasias/tratamiento farmacológico
9.
J Proteome Res ; 13(2): 961-8, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24303873

RESUMEN

In clinical settings, biopsies are routinely used to determine cancer type and grade based on tumor cell morphology, as determined via histochemical or immunohistochemical staining. Unfortunately, in a significant number of cases, traditional biopsy results are either inconclusive or do not provide full subtype differentiation, possibly leading to inefficient or ineffective treatment. Glycomic profiling of the cell membrane offers an alternate route toward cancer diagnosis. In this study, isomer-sensitive nano-LC/MS was used to directly obtain detailed profiles of the different N-glycan structures present on cancer cell membranes. Membrane N-glycans were extracted from cells representing various subtypes of breast, lung, cervical, ovarian, and lymphatic cancer. Chip-based porous graphitized carbon nano-LC/MS was used to separate, identify, and quantify the native N-glycans. Structure-sensitive N-glycan profiling identified hundreds of glycan peaks per cell line, including multiple isomers for most compositions. Hierarchical clusterings based on Pearson correlation coefficients were used to quickly compare and separate each cell line according to originating organ and disease subtype. Based simply on the relative abundances of broad glycan classes (e.g., high mannose, complex/hybrid fucosylated, complex/hybrid sialylated, etc.), most cell lines were readily differentiated. More closely related cell lines were differentiated based on several-fold differences in the abundances of individual glycans. Based on characteristic N-glycan profiles, primary cancer origins and molecular subtypes could be distinguished. These results demonstrate that stark differences in cancer cell membrane glycosylation can be exploited to create an MS-based biopsy, with potential applications toward cancer diagnosis and direction of treatment.


Asunto(s)
Neoplasias/patología , Polisacáridos/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Cromatografía Liquida , Glicómica , Humanos , Espectrometría de Masas , Neoplasias/clasificación , Neoplasias/metabolismo
10.
Biomacromolecules ; 15(5): 1579-85, 2014 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-24650082

RESUMEN

Hydrogel systems based on cross-linked polymeric materials which could provide both adhesion and cohesion in wet environment have been considered as a promising formulation of tissue adhesives. Inspired by marine mussel adhesion, many researchers have tried to exploit the 3,4-dihydroxyphenylalanine (DOPA) molecule as a cross-linking mediator of synthetic polymer-based hydrogels which is known to be able to achieve cohesive hardening as well as adhesive bonding with diverse surfaces. Beside DOPA residue, composition of other amino acid residues and structure of mussel adhesive proteins (MAPs) have also been considered important elements for mussel adhesion. Herein, we represent a novel protein-based hydrogel system using DOPA-containing recombinant MAP. Gelation can be achieved using both oxdiation-induced DOPA quinone-mediated covalent and Fe(3+)-mediated coordinative noncovalent cross-linking. Fe(3+)-mediated hydrogels show deformable and self-healing viscoelastic behavior in rheological analysis, which is also well-reflected in bulk adhesion strength measurement. Quinone-mediated hydrogel has higher cohesive strength and can provide sufficient gelation time for easier handling. Collectively, our newly developed MAP hydrogel can potentially be used as tissue adhesive and sealant for future applications.


Asunto(s)
Bivalvos/química , Dihidroxifenilalanina/química , Hidrogeles/química , Proteínas/química , Animales , Estructura Molecular , Reología
11.
Nutrients ; 16(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38999788

RESUMEN

Human milk reduces risk for necrotizing enterocolitis in preterm infants. Necrotizing enterocolitis occurs in the ileocecal region where thousands of milk protein-derived peptides have been released from digestion. Digestion-released peptides may exert bioactivity, such as antimicrobial and immunomodulatory activities, in the gut. In this study, we applied mass spectrometry-based peptidomics to characterize peptides present in colostrum before and after in vitro digestion. Sequence-based computational modeling was applied to predict peptides with antimicrobial activity. We identified more peptides in undigested samples, yet the abundances were much higher in the digested samples. Heatmapping demonstrated highly different peptide profiles between undigested and digested samples. Four peptides (αS1-casein [157-163], αS1-casein [157-165], ß-casein [153-159] and plasminogen [591-597]) were selected, synthesized and tested against common pathogenic bacteria associated with necrotizing enterocolitis. All four exhibited bacteriostatic, though not bactericidal, activities against Klebsiella aerogenes, Citrobacter freundii and Serratia marcescens, but not Escherichia coli.


Asunto(s)
Calostro , Enterocolitis Necrotizante , Leche Humana , Humanos , Calostro/química , Recién Nacido , Enterocolitis Necrotizante/prevención & control , Leche Humana/química , Péptidos Antimicrobianos/farmacología , Péptidos/farmacología , Femenino , Caseínas/farmacología , Antibacterianos/farmacología , Digestión , Proteínas de la Leche/farmacología
13.
J Proteome Res ; 12(10): 4414-23, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-24016182

RESUMEN

Despite recent advances, site-specific profiling of protein glycosylation remains a significant analytical challenge for conventional proteomic methodology. To alleviate the issue, we propose glyco-analytical multispecific proteolysis (Glyco-AMP) as a strategy for glycoproteomic characterization. Glyco-AMP consists of rapid, in-solution digestion of an analyte glycoprotein (or glycoprotein mixture) by a multispecific protease (or protease cocktail). Resulting glycopeptides are chromatographically separated by isomer-specific porous graphitized carbon nano-LC, quantified by high-resolution MS, and structurally elucidated by MS/MS. To demonstrate the consistency and customizability of Glyco-AMP methodology, the glyco-analytical performances of multispecific proteases subtilisin, pronase, and proteinase K were characterized in terms of quantitative accuracy, sensitivity, and digestion kinetics. Glyco-AMP was shown be effective on glycoprotein mixtures as well as glycoproteins with multiple glycosylation sites, providing detailed, quantitative, site- and structure-specific information about protein glycosylation.


Asunto(s)
Glicoproteínas/química , Péptido Hidrolasas/química , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Conformación de Carbohidratos , Secuencia de Carbohidratos , Cromatografía Líquida de Alta Presión , Glicosilación , Humanos , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/aislamiento & purificación , Mapeo Peptídico , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Proteolisis , Proteómica , Ribonucleasas/química , Espectrometría de Masas en Tándem
14.
Food Chem ; 398: 133864, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35969996

RESUMEN

The ability of bovine κ-casein-derived caseinomacropeptide (CMP) to exert bioactivity in the human gut depends on its digestive survival. Sampling from the human jejunum after feeding CMP and top-down glycopeptidomics analysis facilitates the determination of CMP survival. To reduce interference from non-target molecules in mass spectrometric analysis, CMP must be isolated from digestive fluid. To identify an optimal extraction method, this study compared the profiles of CMP extracted from feeding material (commercial CMP in water) and digestive fluid by ethanol precipitation, perchloric acid (PCA) precipitation, and ultrafiltration. Ethanol precipitation yielded the highest ion abundances for aglycosylated CMP and glycosylated CMP in both feeding material and jejunal samples. Notably, PCA precipitation yielded the highest abundance of partially digested CMP-derived fragments in jejunal samples. Overall, ethanol precipitation was the most effective among the methods tested for intact CMP extraction from jejunal fluids, whereas PCA precipitation was optimal for extraction of CMP fragments.


Asunto(s)
Caseínas , Yeyuno , Animales , Bovinos , Humanos , Caseínas/química , Etanol , Fragmentos de Péptidos , Percloratos , Ultrafiltración
15.
Foods ; 12(2)2023 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-36673392

RESUMEN

Kappa-casein-derived caseinomacropeptide (CMP)-a 64-amino-acid peptide-is released from kappa-casein after rennet treatment and is one of the major peptides in whey protein isolate (WPI). CMP has anti-inflammatory and antibacterial activities. It also has two major amino acid sequences with different modifications, including glycosylation, phosphorylation, and oxidation. To understand the potential biological role of CMP within the human body, there is a need to examine the extent to which CMP and CMP-derived fragments survive across the digestive tract, where they can exert these functions. In this study, three solid-phase extraction (SPE) methods-porous graphitized carbon (PGC), hydrophilic interaction liquid chromatography (HILIC), and C18 chromatography-were evaluated to determine which SPE sorbent is the most efficient to extract intact CMP and CMP-derived peptides from WPI and intestinal digestive samples prior to LC-MS/MS acquisition. The C18 SPE sorbent was the most efficient in extracting intact CMP and CMP-derived peptides from WPI, whereas the PGC SPE sorbent was the most efficient in extracting CMP-derived peptides from intestinal digesta samples.

16.
J Agric Food Chem ; 70(23): 7077-7084, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35608530

RESUMEN

Human milk-protein-derived peptides exhibit an array of bioactivities. Certain bioactivities cannot be exerted unless the peptides are absorbed across the gastrointestinal lumen into the bloodstream. The purpose of study was to determine which peptides derived from in vitro digestion of human milk could cross human intestinal Caco-2 cell monolayers. Our results showed that the numbers of peptides absorbed by the Caco-2 cell monolayer were different at different concentrations (44 peptides out of 169 peptides detected at 10 µg/mL, 124 peptides out of 204 peptides detected at 100 µg/mL, and 175 peptides out of 236 peptides detected at 1000 µg/mL). Four peptides (NLHLPLP (ß-casein [138-144]), PLAPVHNPI (ß-casein [216-224]), PLMQQVPQPIPQ (ß-casein [148-159]), and FDPQIPK (ß-casein [126-132])) crossed to the basolateral chamber of the Caco-2 monolayer incubated with peptides at all three concentrations. Among the peptides identified in the basolateral chambers, three peptides (NLHLPLP (ß-casein [138-144]), LENLHLPLP (ß-casein [136-144]), and QVVPYPQ (ß-casein [182-188])) are known ACE-inhibitors; one peptide (LLNQELLLNPTHQIYPV (ß-casein [197-213])) is antimicrobial, and another peptide (QVVPYPQ (ß-casein [182-188])) has antioxidant activity. These findings indicate that specific milk peptides may be able to reach the bloodstream and exert bioactivity.


Asunto(s)
Caseínas , Leche Humana , Animales , Disponibilidad Biológica , Células CACO-2 , Caseínas/metabolismo , Digestión , Humanos , Leche/metabolismo , Leche Humana/metabolismo , Péptidos/metabolismo
17.
JPEN J Parenter Enteral Nutr ; 46(5): 1119-1129, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34687453

RESUMEN

BACKGROUND: Although human-milk feeding reduces the risk of necrotizing enterocolitis (NEC) in preterm infants compared with formula feeding, the exact risk-reduction mechanism remains unknown. As NEC occurs at the distal small intestine in which digestion has occurred, we applied proteomics to examine the extent to which colostrum proteins survive simulated infant in vitro-digestion and, thus, have potential to exert biological function. METHODS: Ten preterm colostrum samples were left undigested or in vitro-digested, and lipopolysaccharide (LPS)-binding protein, soluble cluster of differentiation 14, and tumor necrosis factor (TNF) receptors I and II were measured using enzyme-linked immunosorbent assay in all undigested and in vitro-digested samples. Fully differentiated Caco-2 cells were exposed to digested colostrum samples before stimulation with LPS or TNF or no stimulation. Inflammation (interleukin-8) and cytotoxicity (lactate dehydrogenase) were measured. Proteomic analyses of undigested and in vitro-digested samples were done using mass spectrometry. RESULTS: We found that most proteins in colostrum are significantly, if not completely, degraded after in vitro-digestion. We found select individual and combination digestion-resistant proteins that were positively correlated with LPS- and TNF-induced inflammation. CONCLUSION: These results indicate the importance of considering the extent to which specific dietary compounds survive digestion to reach their site of claimed action (distal intestine) and that some digestion-resistant proteins may be contributing toward "low-grade" inflammation that is necessary to promote intestinal growth and maturation during early infancy. This work provides the most detailed understanding of human-milk protein degradation with simulated infant in vitro-digestion to date.


Asunto(s)
Calostro , Enterocolitis Necrotizante , Células CACO-2 , Calostro/química , Calostro/metabolismo , Digestión , Enterocolitis Necrotizante/metabolismo , Células Epiteliales/metabolismo , Femenino , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro , Inflamación/metabolismo , Intestinos/patología , Lipopolisacáridos/metabolismo , Embarazo , Proteómica
18.
Front Nutr ; 9: 926814, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36185694

RESUMEN

Background: Donor human milk should be processed to guarantee microbiological safety prior to infant feeding, but this process can influence the structure and quantity of functional proteins. Objective: The aim of this study was to determine the effect of thawing, homogenization, vat-pasteurization (Vat-PT), retort sterilization (RTR) and ultra-high-temperature (UHT) processing on the structure of bioactive proteins in donor milk. Methods: Pooled donor milk was either not treated (Raw) or treated with an additional freeze-thaw cycle with and without homogenization, Vat-PT, RTR with and without homogenization, and UHT processing with and without homogenization. Overall protein retention was assessed via sodium-dodecyl sulfate (SDS-PAGE), and the immunoreactivity of 13 bioactive proteins were assessed via enzyme-linked immunosorbent assay (ELISA). Results: Freeze-thawing, freeze-thawing plus homogenization and Vat-PT preserved all the immunoglobulins (sIgA/IgA, IgG, IgM) in donor milk, whereas RTR and UHT degraded almost all immunoglobulins. UHT did not alter osteopontin immunoreactivity, but Vat-PT and retort decreased it by ~50 and 70%, respectively. Freeze-thawing with homogenization, Vat-PT and UHT reduced lactoferrin's immunoreactivity by 35, 65, and 84%, respectively. Lysozyme survived unaltered throughout all processing conditions. In contrast, elastase immunoreactivity was decreased by all methods except freeze-thawing. Freeze-thawing, freeze-thawing plus homogenization and Vat-PT did not alter polymeric immunoglobulin receptor (PIGR) immunoreactivity, but RTR, RTR plus homogenization and UHT increased detection. All heat processing methods increased α-lactalbumin immunoreactivity. Vat-PT preserved all the growth factors (vascular/endothelial growth factor, and transforming growth factors ß1 and ß2), and UHT treatments preserved the majority of these factors. Conclusion: Different bioactive proteins have different sensitivity to the treatments tested. Overall, Vat-PT preserved more of the bioactive proteins compared with UHT or RTR. Therefore, human milk processors should consider the impact of processing methods on key bioactive proteins in human milk.

19.
Talanta ; 224: 121811, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33379036

RESUMEN

Human milk contains numerous N-glycoproteins with functions that provide protection to the infant. Increasing understanding of the functional role of human milk glycoproteins within the infant requires toolsets to comprehensively profile their site-specific glycosylation patterns. However, optimized methods for site-specific glycosylation analysis across the entire human milk proteome are not available. Therefore, we performed a systematic analysis of techniques for profiling the sites and compositions of N-glycans in human milk using liquid chromatography/mass spectrometry. To decrease interference from non-target molecules, we compared techniques for protein extraction, including ethanol (EtOH) precipitation, trichloroacetic acid precipitation, molecular weight cut-off filtration and techniques for tryptic glycopeptide enrichment, including C18-, porous graphitized carbon and hydrophilic interaction liquid chromatography (HILIC)-solid phase extraction (SPE) and acetone precipitation. We compared the capacity of higher-energy collision dissociation, electron-transfer dissociation and electron-transfer/higher-energy collision dissociation (EThcD) to produce fragment ions that would enable effective identification of the glycan composition, peptide sequence and glycosylation site. Of these methods, a combination of EtOH precipitation, HILIC-SPE and EThcD-fragmentation was the most effective for human milk N-glycopeptide profiling. This optimized approach significantly increased the number of N-glycopeptides and precursor N-glycoproteins (246 N-glycopeptides from 29 glycoproteins) compared with a more common extraction approach with no protein extraction and C18 clean-up (62 N-glycopeptides from 11 glycoproteins). The advancement in methods for human milk N-glycoproteins provided by this study represents a key step for better understanding the function of glycoproteins within the breast milk-fed infant.


Asunto(s)
Leche Humana , Espectrometría de Masas en Tándem , Cromatografía Liquida , Glicopéptidos , Glicoproteínas , Humanos
20.
Foods ; 10(9)2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34574138

RESUMEN

Caseinomacropeptide (CMP) is released from bovine kappa-casein after rennet treatment and is one of the major peptides in whey protein isolate. CMP has in vitro anti-inflammatory and antibacterial activities. CMP has two major amino acid sequences with different modifications, including glycosylation, phosphorylation and oxidation. However, no previous work has provided a comprehensive profile of intact CMP. Full characterization of CMP composition and structure is essential to understand the bioactivity of CMP. In this study, we developed a top-down glycopeptidomics-based analytical method to profile CMP and CMP-derived peptides using Orbitrap mass spectrometry combined with nano-liquid chromatography with electron-transfer/higher-energy collision dissociation. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) spectra of CMPs were annotated to confirm peptide sequence, glycan composition and other post-translational modifications using automatic data processing. Fifty-one intact CMPs and 159 CMP-derived peptides were identified in four samples (one CMP standard, two commercial CMP products and one whey protein isolate). Overall, this novel approach provides comprehensive characterization of CMP and CMP-derived peptides and glycopeptides, and it can be applied in future studies of product quality, digestive survival and bioactivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA