Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 328
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916065

RESUMEN

Somatic mosaicism in a fraction of brain cells causes neurodevelopmental disorders, including childhood intractable epilepsy. However, the threshold for somatic mosaicism leading to brain dysfunction is unknown. In this study, we induced various mosaic burdens in focal cortical dysplasia type II (FCD II) mice, featuring mTOR somatic mosaicism and spontaneous behavioral seizures. The mosaic burdens ranged from approximately 1,000 to 40,000 neurons expressing the mTOR mutant in the somatosensory (SSC) or medial prefrontal (PFC) cortex. Surprisingly, approximately 8,000 to 9,000 neurons expressing the MTOR mutant, which are extrapolated to constitute 0.08-0.09% of total cells or roughly 0.04% of variant allele frequency (VAF) in the mouse hemicortex, were sufficient to trigger epileptic seizures. The mutational burden was correlated with seizure frequency and onset, with a higher tendency for electrographic inter-ictal spikes and beta- and gamma-frequency oscillations in FCD II mice exceeding the threshold. Moreover, mutation-negative FCD II patients in deep sequencing of their bulky brain tissues revealed somatic mosaicism of the mTOR pathway genes as low as 0.07% in resected brain tissues through ultra-deep targeted sequencing (up to 20 million reads). Thus, our study suggests that extremely low levels of somatic mosaicism can contribute to brain dysfunction.

2.
PLoS Genet ; 18(9): e1010404, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36121845

RESUMEN

Most somatic mutations that arise during normal development are present at low levels in single or multiple tissues depending on the developmental stage and affected organs. However, the effect of human developmental stages or mutations of different organs on the features of somatic mutations is still unclear. Here, we performed a systemic and comprehensive analysis of low-level somatic mutations using deep whole-exome sequencing (average read depth ~500×) of 498 multiple organ tissues with matched controls from 190 individuals. Our results showed that early clone-forming mutations shared between multiple organs were lower in number but showed higher allele frequencies than late clone-forming mutations [0.54 vs. 5.83 variants per individual; 6.17% vs. 1.5% variant allele frequency (VAF)] along with less nonsynonymous mutations and lower functional impacts. Additionally, early and late clone-forming mutations had unique mutational signatures that were distinct from mutations that originated from tumors. Compared with early clone-forming mutations that showed a clock-like signature across all organs or tissues studied, late clone-forming mutations showed organ, tissue, and cell-type specificity in the mutation counts, VAFs, and mutational signatures. In particular, analysis of brain somatic mutations showed a bimodal occurrence and temporal-lobe-specific signature. These findings provide new insights into the features of somatic mosaicism that are dependent on developmental stage and brain regions.


Asunto(s)
Mosaicismo , Neoplasias , Frecuencia de los Genes , Humanos , Mutación , Neoplasias/genética , Secuenciación del Exoma
3.
Ann Neurol ; 93(6): 1082-1093, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36700525

RESUMEN

OBJECTIVE: Brain somatic mutations in mTOR pathway genes are a major genetic etiology of focal cortical dysplasia type II (FCDII). Despite a greater ability to detect low-level somatic mutations in the brain by deep sequencing and analytics, about 40% of cases remain genetically unexplained. METHODS: We included 2 independent cohorts consisting of 21 patients with mutation-negative FCDII without apparent mutations on conventional deep sequencing of bulk brain. To find ultra-low level somatic variants or structural variants, we isolated cells exhibiting phosphorylation of the S6 ribosomal protein (p-S6) in frozen brain tissues using fluorescence-activated cell sorting (FACS). We then performed deep whole-genome sequencing (WGS; >90×) in p-S6+ cells in a cohort of 11 patients with mutation-negative. Then, we simplified the method to whole-genome amplification and target gene sequencing of p-S6+ cells in independent cohort of 10 patients with mutation-negative followed by low-read depth WGS (10×). RESULTS: We found that 28.6% (6 of 21) of mutation-negative FCDII carries ultra-low level somatic mutations (less than 0.2% of variant allele frequency [VAF]) in mTOR pathway genes. Our method showed ~34 times increase of the average mutational burden in FACS mediated enrichment of p-S6+ cells (average VAF = 5.84%) than in bulky brain tissues (average VAF = 0.17%). We found that 19% (4 of 21) carried germline structural variations in GATOR1 complex undetectable in whole exome or targeted gene sequencing. CONCLUSIONS: Our method facilitates the detection of ultra-low level somatic mutations, in specifically p-S6+ cells, and germline structural variations and increases the genetic diagnostic rate up to ~80% for the entire FCDII cohort. ANN NEUROL 2023;93:1082-1093.


Asunto(s)
Epilepsia , Displasia Cortical Focal , Humanos , Serina-Treonina Quinasas TOR/genética , Epilepsia/genética , Mutación/genética
4.
Int J Cosmet Sci ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38924609

RESUMEN

OBJECTIVE: Methylsulfonylmethane (MSM), which contains organic sulphur, has been used for a long time as a medicinal ingredient because of its benefits to human health. MSM is reported to be protective against certain skin disorders, but it is unknown whether it affects melanin synthesis. Therefore, in our current research, we examined the possibility of MSM controlling the production of melanin in Mel-Ab melanocytes. METHODS: In Mel-Ab cells, melanin contents and tyrosinase activities were assessed and quantified. The expression of microphthalmia-associated transcription factor (MITF) and tyrosinase was evaluated using western blot analysis, while MSM-induced signalling pathways were investigated. RESULTS: The MSM treatment significantly resulted in a dose-dependent increase in melanin production. Furthermore, MSM elevated melanin-related proteins, including MITF and tyrosinase. However, the rate-limiting enzyme of melanin production, tyrosinase, was not directly influenced by it. Therefore, we investigated potential melanogenesis-related signalling pathways that may have been triggered by MSM. Our findings showed that MSM did not influence the signalling pathways associated with glycogen synthase kinase 3ß, cAMP response-element binding protein, extracellular signal-regulated kinase, or p38 mitogen-activated protein kinase. However, MSM phosphorylated c-Jun N-terminal kinases/stress-activated protein kinase (JNK/SAPK), which is known to induce melanogenesis. SP600125, a specific JNK inhibitor, inhibited MSM-induced melanogenesis. CONCLUSION: Taken together, our study indicates that MSM induces melanin synthesis and may serve as a therapeutic option for hypopigmentary skin disorders such as vitiligo.

5.
J Biomed Sci ; 30(1): 16, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36872339

RESUMEN

BACKGROUND: Quelling microglial-induced excessive neuroinflammation is a potential treatment strategy across neurological disorders, including traumatic brain injury (TBI), and can be achieved by thalidomide-like drugs albeit this approved drug class is compromised by potential teratogenicity. Tetrafluorobornylphthalimide (TFBP) and tetrafluoronorbornylphthalimide (TFNBP) were generated to retain the core phthalimide structure of thalidomide immunomodulatory imide drug (IMiD) class. However, the classical glutarimide ring was replaced by a bridged ring structure. TFBP/TFNBP were hence designed to retain beneficial anti-inflammatory properties of IMiDs but, importantly, hinder cereblon binding that underlies the adverse action of thalidomide-like drugs. METHODS: TFBP/TFNBP were synthesized and evaluated for cereblon binding and anti-inflammatory actions in human and rodent cell cultures. Teratogenic potential was assessed in chicken embryos, and in vivo anti-inflammatory actions in rodents challenged with either lipopolysaccharide (LPS) or controlled cortical impact (CCI) moderate traumatic brain injury (TBI). Molecular modeling was performed to provide insight into drug/cereblon binding interactions. RESULTS: TFBP/TFNBP reduced markers of inflammation in mouse macrophage-like RAW264.7 cell cultures and in rodents challenged with LPS, lowering proinflammatory cytokines. Binding studies demonstrated minimal interaction with cereblon, with no resulting degradation of teratogenicity-associated transcription factor SALL4 or of teratogenicity in chicken embryo assays. To evaluate the biological relevance of its anti-inflammatory actions, two doses of TFBP were administered to mice at 1 and 24 h post-injury following CCI TBI. Compared to vehicle treatment, TFBP reduced TBI lesion size together with TBI-induction of an activated microglial phenotype, as evaluated by immunohistochemistry 2-weeks post-injury. Behavioral evaluations at 1- and 2-weeks post-injury demonstrated TFBP provided more rapid recovery of TBI-induced motor coordination and balance impairments, versus vehicle treated mice. CONCLUSION: TFBP and TFNBP represent a new class of thalidomide-like IMiDs that lower proinflammatory cytokine generation but lack binding to cereblon, the main teratogenicity-associated mechanism. This aspect makes TFBP and TFNBP potentially safer than classic IMiDs for clinical use. TFBP provides a strategy to mitigate excessive neuroinflammation associated with moderate severity TBI to, thereby, improve behavioral outcome measures and warrants further investigation in neurological disorders involving a neuroinflammatory component.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Embrión de Pollo , Humanos , Animales , Ratones , Talidomida , Enfermedades Neuroinflamatorias , Agentes Inmunomoduladores , Lipopolisacáridos , Inflamación
6.
Molecules ; 28(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37110854

RESUMEN

High-performance liquid chromatography (HPLC) analysis of three commercial tomatine samples and another isolated from green tomatoes revealed the presence of two small peaks in addition to those associated with the glycoalkaloids dehydrotomatine and α-tomatine. The present study investigated the possible structures of the compounds associated with the two small peaks using HPLC-mass spectrophotometric (MS) methods. Although the two peaks elute much earlier on chromatographic columns than the elution times of the known tomato glycoalkaloids dehydrotomatine and α-tomatine, isolation of the two compounds by preparative chromatography and subsequent analysis by MS shows the two compounds have identical molecular weights, tetrasaccharide side chains, and MS and MS/MS fragmentation patterns to dehydrotomatine and α-tomatine. We suggest the two isolated compounds are isomeric forms of dehydrotomatine and α-tomatine. The analytical data indicate that widely used commercial tomatine preparations and those extracted from green tomatoes and tomato leaves consist of a mixture of α-tomatine, dehydrotomatine, an α-tomatine isomer, and a dehydrotomatine isomer in an approximate ratio of 81:15:4:1, respectively. The significance of the reported health benefits of tomatine and tomatidine is mentioned.


Asunto(s)
Solanum lycopersicum , Tomatina , Tomatina/química , Espectrometría de Masas en Tándem
7.
Ann Neurol ; 90(2): 285-299, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34180075

RESUMEN

OBJECTIVE: Low-level somatic mosaicism in the brain has been shown to be a major genetic cause of intractable focal epilepsy. However, how a relatively few mutation-carrying neurons are able to induce epileptogenesis at the local network level remains poorly understood. METHODS: To probe the origin of epileptogenesis, we measured the excitability of neurons with MTOR mutation and nearby nonmutated neurons recorded by whole-cell patch-clamp and array-based electrodes comparing the topographic distribution of mutation. Computational simulation is used to understand neural network-level changes based on electrophysiological properties. To examine the underlying mechanism, we measured inhibitory and excitatory synaptic inputs in mutated neurons and nearby neurons by electrophysiological and histological methods using the mouse model and postoperative human brain tissue for cortical dysplasia. To explain non-cell-autonomous hyperexcitability, an inhibitor of adenosine kinase was injected into mice to enhance adenosine signaling and to mitigate hyperactivity of nearby nonmutated neurons. RESULTS: We generated mice with a low-level somatic mutation in MTOR presenting spontaneous seizures. The seizure-triggering hyperexcitability originated from nonmutated neurons near mutation-carrying neurons, which proved to be less excitable than nonmutated neurons. Interestingly, the net balance between excitatory and inhibitory synaptic inputs onto mutated neurons remained unchanged. Additionally, we found that inhibition of adenosine kinase, which affects adenosine metabolism and neuronal excitability, reduced the hyperexcitability of nonmutated neurons. INTERPRETATION: This study shows that neurons carrying somatic mutations in MTOR lead to focal epileptogenesis via non-cell-autonomous hyperexcitability of nearby nonmutated neurons. ANN NEUROL 2021;90:285-299.


Asunto(s)
Epilepsias Parciales/genética , Epilepsias Parciales/fisiopatología , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical/fisiopatología , Serina-Treonina Quinasas TOR/genética , Adolescente , Animales , Niño , Preescolar , Electroencefalografía/métodos , Epilepsias Parciales/diagnóstico por imagen , Femenino , Humanos , Masculino , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos , Embarazo
8.
Ann Neurol ; 89(6): 1248-1252, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33834539

RESUMEN

Brain mosaic mutations are a major cause of refractory focal epilepsies with cortical malformations such as focal cortical dysplasia, hemimegalencephaly, malformation of cortical development with oligodendroglial hyperplasia in epilepsy, and ganglioglioma. Here, we collected cerebrospinal fluid (CSF) during epilepsy surgery to search for somatic variants in cell-free DNA (cfDNA) using targeted droplet digital polymerase chain reaction. In 3 of 12 epileptic patients with known somatic mutations previously identified in brain tissue, we here provide evidence that brain mosaicism can be detected in the CSF-derived cfDNA. These findings suggest future opportunities for detecting the mutant allele driving epilepsy in CSF. ANN NEUROL 2021;89:1248-1252.


Asunto(s)
Encéfalo , Ácidos Nucleicos Libres de Células/líquido cefalorraquídeo , Epilepsia Refractaria/genética , Adolescente , Niño , Preescolar , Epilepsia Refractaria/líquido cefalorraquídeo , Femenino , Humanos , Lactante , Masculino , Mutación
9.
J Neurooncol ; 160(1): 41-53, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36045266

RESUMEN

PURPOSE: Non-germinomatous germ cell tumors (NGGCTs) are rare pediatric conditions. This multicenter study using Asian multinational patient data investigated treatment outcomes and prognostic factors for NGGCTs. METHODS: Medical records of 251 patients with NGGCTs treated from 1995 to 2015 were retrospectively analyzed from participating centers in Asian countries (Korea, Taiwan, Singapore, and Japan). RESULTS: The median follow up was 8.5 years (95% CI 7.8-9.9). In the total cohort, 5-year event-free survival (EFS) and overall survival (OS) rates were 78.2% and 85.4%, respectively. In 17.9% of the patients, diagnosis was determined by tumor markers alone (alpha-fetoprotein ≥ 10 ng/mL (Korea) or > 25 ng/mL (Taiwan and Singapore), and/or ß-human chorionic gonadotropin (ß-hCG) ≥ 50 mIU/mL). Patients with immature teratomas and mature teratomas comprised 12.0% and 8.4%, respectively. The 5-year EFS rate was higher in patients with histologically confirmed germinoma with elevated ß-hCG (n = 28) than those in patients with malignant NGGCTs (n = 127). Among malignant NGGCTs, patients with choriocarcinoma showed the highest 5-year OS of 87.6%, while yolk sac tumors showed the lowest OS (68.8%). For malignant NGGCT subgroups, an increase in serum ß-hCG levels by 100 mIU/mL was identified as a significant prognostic factor associated with the EFS and OS. CONCLUSION: Our result shows excellent survival outcomes of overall CNS NGGCT. However, treatment outcome varied widely across the histopathologic subgroup of NGGCT. Hence, this study suggests the necessity for accurate diagnosis by surgical biopsy and further optimization of diagnosis and treatment according to the histopathology of NGGCTs. Future clinical trials should be designed for individualized treatments for different NGGCTs subsets.


Asunto(s)
Neoplasias Encefálicas , Germinoma , Neoplasias de Células Germinales y Embrionarias , Masculino , Humanos , Niño , Estudios Retrospectivos , Pronóstico , Neoplasias de Células Germinales y Embrionarias/diagnóstico , Neoplasias de Células Germinales y Embrionarias/terapia , Germinoma/patología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamiento farmacológico , Gonadotropina Coriónica Humana de Subunidad beta
10.
Alzheimers Dement ; 18(11): 2327-2340, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35234334

RESUMEN

OBJECTIVE: Evaluating the efficacy of 3,6'-dithioPomalidomide in 5xFAD Alzheimer's disease (AD) mice to test the hypothesis that neuroinflammation is directly involved in the development of synaptic/neuronal loss and cognitive decline. BACKGROUND: Amyloid-ß (Aß) or tau-focused clinical trials have proved unsuccessful in mitigating AD-associated cognitive impairment. Identification of new drug targets is needed. Neuroinflammation is a therapeutic target in neurodegenerative disorders, and TNF-α a pivotal neuroinflammatory driver. NEW HYPOTHESIS: AD-associated chronic neuroinflammation directly drives progressive synaptic/neuronal loss and cognitive decline. Pharmacologically mitigating microglial/astrocyte activation without altering Aß generation will define the role of neuroinflammation in AD progression. MAJOR CHALLENGES: Difficulty of TNF-α-lowering compounds reaching brain, and identification of a therapeutic-time window to preserve the beneficial role of neuroinflammatory processes. LINKAGE TO OTHER MAJOR THEORIES: Microglia/astroglia are heavily implicated in maintenance of synaptic plasticity/function in healthy brain and are disrupted by Aß. Mitigation of chronic gliosis can restore synaptic homeostasis/cognitive function.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Animales , Ratones , Péptidos beta-Amiloides , Cognición , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía , Enfermedades Neuroinflamatorias , Plasticidad Neuronal , Factor de Necrosis Tumoral alfa
11.
Pharmazie ; 77(6): 186-190, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35751164

RESUMEN

The leucine-rich repeat LGI family member 3 (LGI3) has been reported to regulate various functions in epidermal keratinocytes. In this study, we investigated the effects of LGI3 on keratinocyte migration in environments with different glucose concentrations. Our results showed that cell migration is markedly impaired in high-glucose environments compared to in low-glucose environments (control). Nevertheless, the use of LGI3 in high-glucose environments restores cell migration to the normal level. Therefore, we performed LGI3 knockdown to identify the role of LGI3 in cell migration. It was observed that transfecting LGI3 siRNA into HaCaT cells reduces the expression of LGI3 and inhibits wound closure. These results indicate that LGI3 is deeply involved in wound healing in high-glucose environments. Western blot analysis showed that in high-glucose environments, LGI3 increases the phosphorylation of Akt, forkhead box protein O1, and focal adhesion kinase. However, no change was observed in the levels of glycogen synthase kinase 3ß, c-Jun N-terminal kinase, extracellular signal-regulated kinase, or p38 mitogen-activated protein kinase. Further results showed that LY294002, a specific inhibitor of phosphatidylinositol 3-kinase, reduced LGI3-induced cell migration. It is generally known that Akt activation leads to the accumulation of ß-catenin, an important mediator of keratinocyte migration. LGI3 greatly increased the expression of ß-catenin in high-glucose environments comparison to that in the low-glucose environments. Taken together, these data indicate that LGI3 induces keratinocyte migration in high-glucose environments as a result of ß-catenin accumulation via Akt phosphorylation. Therefore, LGI3 can be considered a new treatment option for diabetic wound healing.


Asunto(s)
Queratinocitos/metabolismo , Cicatrización de Heridas , beta Catenina , Movimiento Celular , Glucosa/metabolismo , Humanos , Proteínas del Tejido Nervioso/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , beta Catenina/metabolismo
12.
Retina ; 41(9): 1791-1798, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33840794

RESUMEN

PURPOSE: Although moyamoya disease primarily affects the carotid artery in the ophthalmic artery bifurcation area, retinal vascular abnormalities in moyamoya disease have rarely been reported. The purpose of this report is to describe clinical findings of patients with retinal vascular occlusion in patients with moyamoya disease and present its clinical significance. METHODS: We reviewed and analyzed patients with moyamoya disease with retinal vascular occlusions. For this, a retrospective medical chart review was performed in a tertiary medical center and a literature search was performed using PubMed and EMBASE until September 2020. RESULTS: Patients with retinal artery occlusion (RAO) were significantly younger than patients with retinal vein occlusion (25.0 vs. 40.1 years, P = 0.023). Of 14 patients, retinal vascular occlusion was the presenting sign of moyamoya disease in 8 (57.1%) patients. The occlusion site at the carotid artery was proximal to the ophthalmic artery bifurcation area in 8 (57.1%) patients. Legal blindness occurred in 8 (57.1%) patients at final visits. CONCLUSION: Retinal vascular occlusion is a rare but sight-threatening ocular complication in patients with moyamoya disease. Overall, younger age may be a risk factor for RAO, whereas older age for retinal vein occlusion. Retinal vascular occlusion can be an important indicator of moyamoya disease screening, especially in relatively younger and healthy patients.


Asunto(s)
Enfermedad de Moyamoya/complicaciones , Arteria Oftálmica/diagnóstico por imagen , Oclusión de la Arteria Retiniana/etiología , Oclusión de la Vena Retiniana/etiología , Adulto , Angiografía Cerebral/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Enfermedad de Moyamoya/diagnóstico , Oclusión de la Arteria Retiniana/diagnóstico , Oclusión de la Vena Retiniana/diagnóstico , Factores de Riesgo , Tomografía de Coherencia Óptica/métodos
13.
Childs Nerv Syst ; 37(7): 2239-2244, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33939017

RESUMEN

OBJECTIVE: Seizures are one of the most common emergencies in the neonatal intensive care unit (NICU). They are identified through visual inspection of electroencephalography (EEG) reports and treated by neurophysiologic experts. To support clinical seizure detection, several feature-based automatic neonatal seizure detection algorithms have been proposed. However, as they were unsuitable for clinical application due to their low accuracy, we developed a new seizure detection algorithm using machine learning for single-channel EEG to overcome these limitations. METHODS: The dataset applied in our algorithm contains EEG recordings from human neonates. A 19-channel EEG system recorded the brain waves of 79 term neonates admitted to the NICU at the Helsinki University Hospital. From these datasets, we selected six patients with conformational seizure annotations for the pilot study and allocated four and two patients for our training and testing datasets, respectively. The presence of seizures in the EEGs was annotated independently by three experts through visual interpretation. We divided the data into epochs of 5 s each and further defined a seizure block to label the annotations from each expert recorded every second. Subsequently, to create a balanced dataset, any data point with a non-seizure label was moved to the training and test dataset. RESULT: The developed principal component feature-extracted machine learning algorithm used 62.5% of the relative time (only 5 s for decision) of the baseline, reaching an area under the ROC curve score of 0.91. The effect of diversified parameters was meticulously examined, and 100 principal components were extracted to optimize the model performance. CONCLUSION: Our machine learning-based seizure detection algorithm exhibited the potential for clinical application in NICUs, general wards, and at home and proved its convenience by requiring only a single channel for implementation.


Asunto(s)
Electroencefalografía , Convulsiones , Algoritmos , Humanos , Recién Nacido , Aprendizaje Automático , Proyectos Piloto , Convulsiones/diagnóstico
14.
Childs Nerv Syst ; 37(7): 2233-2238, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33755793

RESUMEN

OBJECTIVE: To investigate the feasibility and clinical effectiveness of performing multiple burr hole surgery in pediatric moyamoya patients as a response to failed modified encephaloduroarteriosynangiosis (mEDAS). METHODS: From January 2014 to May 2018, multiple burr hole surgery (MBS) was conducted on 16 hemispheres in 12 patients as a secondary treatment following mEDAS. The male-to-female ratio was 1:2 and the average age at the time of mEDAS was 6 years old. The average patient age was 9 ± 3 years olds (range 7-17) at the time of MBS which occurred an average of 46 months after mEDAS. An average of 10 ± 1 holes (range 8-13) were made. Time-to-peak (TTP) magnetic resonance images (MRI) were taken along 20 axial cuts. Of these cuts, two consecutive cuts on the lateral ventricle were selected to calculate the average value of the region of interest (ROI). The value of the cerebellum was subtracted from the average value of two consecutive cuts. The ROI value was analyzed using a paired t test by SPSS 20 (SPSS Inc., Chicago, IL, USA). RESULTS: All 16 cases presented improvement of clinical symptoms as determined by ROI analysis of the TTP MRI images. The average ROI value was 5.03 ± 6.36 before MBS and - 15.54 ± 9.42 after MBS. The average change in the ROI value was - 20.58 ± 12.59. The ROI value decreased in all cases after MBS. Magnetic resonance angiography (MRA) also showed a positive effect on vascularization. CONCLUSION: In pediatric moyamoya patients, MBS is recommended as secondary option as a response to failed mEDAS. Its clinical effectiveness was shown by analyzing TTP images and assisted by MRA and digital subtraction angiography.


Asunto(s)
Revascularización Cerebral , Enfermedad de Moyamoya , Angiografía de Substracción Digital , Niño , Estudios de Factibilidad , Femenino , Humanos , Lactante , Masculino , Enfermedad de Moyamoya/diagnóstico por imagen , Enfermedad de Moyamoya/cirugía , Trepanación
15.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34361041

RESUMEN

Traumatic brain injury (TBI) is a leading cause of disability and mortality worldwide. It can instigate immediate cell death, followed by a time-dependent secondary injury that results from disproportionate microglial and astrocyte activation, excessive inflammation and oxidative stress in brain tissue, culminating in both short- and long-term cognitive dysfunction and behavioral deficits. Within the brain, the hippocampus is particularly vulnerable to a TBI. We studied a new pomalidomide (Pom) analog, namely, 3,6'-dithioPom (DP), and Pom as immunomodulatory imide drugs (IMiD) for mitigating TBI-induced hippocampal neurodegeneration, microgliosis, astrogliosis and behavioral impairments in a controlled cortical impact (CCI) model of TBI in rats. Both agents were administered as a single intravenous dose (0.5 mg/kg) at 5 h post injury so that the efficacies could be compared. Pom and DP significantly reduced the contusion volume evaluated at 24 h and 7 days post injury. Both agents ameliorated short-term memory deficits and anxiety behavior at 7 days after a TBI. The number of degenerating neurons in the CA1 and dentate gyrus (DG) regions of the hippocampus after a TBI was reduced by Pom and DP. DP, but not Pom, significantly attenuated the TBI-induced microgliosis and DP was more efficacious than Pom at attenuating the TBI-induced astrogliosis in CA1 and DG at 7D after a TBI. In summary, a single intravenous injection of Pom or DP, given 5 h post TBI, significantly reduced hippocampal neurodegeneration and prevented cognitive deficits with a concomitant attenuation of the neuroinflammation in the hippocampus.


Asunto(s)
Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Gliosis/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Factores Inmunológicos/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Talidomida/análogos & derivados , Animales , Lesiones Traumáticas del Encéfalo/complicaciones , Cognición , Gliosis/etiología , Hipocampo/metabolismo , Factores Inmunológicos/farmacología , Masculino , Memoria , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Sprague-Dawley , Talidomida/farmacología , Talidomida/uso terapéutico
16.
Korean J Physiol Pharmacol ; 25(5): 439-448, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34448461

RESUMEN

DA-9601 is an extract obtained from Artemisia asiatica, which has been reported to have anti-inflammatory effects on gastrointestinal lesions; however, its possible anti-inflammatory effects on the small intestine have not been studied yet. Therefore, in this study, we investigated the protective effects of DA-9601 against the ACF-induced small intestinal inflammation. Inflammation of the small intestine was confirmed by histological studies and the changes in the CD4+ T cell fraction induced by the inflammation-related cytokines, and the inflammatory reactions were analyzed. Multifocal discrete small necrotic ulcers with intervening normal mucosa were frequently observed after treatment with ACF. The expression of IL-6 , IL-17, and TNF-α genes was increased in the ACF group; however, it was found to have been significantly decreased in the DA-9601 treated group. In addition, DA-9601 significantly decreased the levels of proinflammatory mediators such as IL-1ß, GMCSF, IFN-γ, and TNF-α; the anti-inflammatory cytokine IL-10, on the other hand, was observed to have increased. It is known that inflammatory mediators related to T cell imbalance and dysfunction continuously activate the inflammatory response, causing chronic tissue damage. The fractions of IFN-γ+ Th1 cells, IL-4+ Th2 cells, IL-9+ Th9 cells, IL-17+ Th17 cells, and Foxp3+ Treg cells were significantly decreased upon DA-9601 treatment. These data suggest that the inflammatory response induced by ACF is reduced by DA-9601 via lowering of the expression of genes encoding the inflammatory cytokines and the concentration of inflammatory mediators. Furthermore, DA-9601 inhibited the acute inflammatory response mediated by T cells, resulting in an improvement in ACF-induced enteritis.

17.
Am J Hum Genet ; 100(3): 454-472, 2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28215400

RESUMEN

Focal cortical dysplasia (FCD) is a major cause of the sporadic form of intractable focal epilepsies that require surgical treatment. It has recently been reported that brain somatic mutations in MTOR account for 15%-25% of FCD type II (FCDII), characterized by cortical dyslamination and dysmorphic neurons. However, the genetic etiologies of FCDII-affected individuals who lack the MTOR mutation remain unclear. Here, we performed deep hybrid capture and amplicon sequencing (read depth of 100×-20,012×) of five important mTOR pathway genes-PIK3CA, PIK3R2, AKT3, TSC1, and TSC2-by using paired brain and saliva samples from 40 FCDII individuals negative for MTOR mutations. We found that 5 of 40 individuals (12.5%) had brain somatic mutations in TSC1 (c.64C>T [p.Arg22Trp] and c.610C>T [p.Arg204Cys]) and TSC2 (c.4639G>A [p.Val1547Ile]), and these results were reproducible on two different sequencing platforms. All identified mutations induced hyperactivation of the mTOR pathway by disrupting the formation or function of the TSC1-TSC2 complex. Furthermore, in utero CRISPR-Cas9-mediated genome editing of Tsc1 or Tsc2 induced the development of spontaneous behavioral seizures, as well as cytomegalic neurons and cortical dyslamination. These results show that brain somatic mutations in TSC1 and TSC2 cause FCD and that in utero application of the CRISPR-Cas9 system is useful for generating neurodevelopmental disease models of somatic mutations in the brain.


Asunto(s)
Epilepsia/genética , Malformaciones del Desarrollo Cortical de Grupo I/genética , Proteínas Supresoras de Tumor/genética , Adolescente , Animales , Encéfalo/metabolismo , Sistemas CRISPR-Cas , Línea Celular Tumoral , Niño , Fosfatidilinositol 3-Quinasa Clase I , Clonación Molecular , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Mutación , Neuronas , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Saliva/química , Análisis de Secuencia de ADN , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa
18.
Cytokine ; 126: 154872, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31627033

RESUMEN

Recently, we reported that HaCaT human keratinocytes secreted leucine-rich repeat LGI family member 3 (LGI3) protein after exposure to ultraviolet B (UVB) irradiation. In the present study, we aimed to determine whether LGI3 is also released in response to stimulation by lipopolysaccharides (LPS), membrane components of gram-negative bacteria. Our results showed that LGI3 was indeed secreted by LPS-stimulated HaCaT cells. We also found that LPS potently stimulated the induction of cycloxygenase-2 (COX-2), which is involved in the inflammatory response. In addition, LPS-induced LGI3 secretion and COX-2 expression were blocked by NS-398, a selective COX-2 inhibitor. Moreover, LPS activated nuclear factor-κB (NF-κB) via a TRIF-dependent pathway, and activated NF-κB led to LGI3 production in HaCaT cells. For the first time, we predicted the LGI3 promoter sequence and demonstrated that NF-κB bound to the LGI3 gene promoter region. LPS treatment also increased the expression of a disintegrin and metalloproteinase domain-containing protein 22 (ADAM22), a candidate LGI3 receptor. Furthermore, co-immunoprecipitation, flow cytometry, and immunocytochemistry revealed that LGI3 associated with ADAM22 in LPS-treated keratinocytes. Thus, ADAM22 may be an LGI3 receptor in human keratinocytes. Taken together, these data suggest that the TRIF-dependent pathway is a novel regulator of LGI3 secretion in response to LPS stimulation in HaCaT cells and that keratinocyte-derived LGI3 interacts with ADAM22 and mediates LPS-induced inflammation.


Asunto(s)
Proteínas ADAM/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , FN-kappa B/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas ADAM/genética , Proteínas Adaptadoras del Transporte Vesicular/genética , Línea Celular , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Citometría de Flujo , Humanos , Inmunohistoquímica , Lipopolisacáridos/farmacología , FN-kappa B/genética , Proteínas del Tejido Nervioso/genética , Nitrobencenos/farmacología , Regiones Promotoras Genéticas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Sulfonamidas/farmacología
19.
Childs Nerv Syst ; 36(9): 1967-1969, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32700038

RESUMEN

PURPOSE: To provide the insight for postoperative hypotonia. Selective posterior rhizotomy (SPR) has been proved as a powerful tool for reducing spasticity. And also, its functional benefit and long-term effect are also well-known. RESULTS: The most considered side effect of this procedure is postoperative hypotonia. However, some extent of temporary postoperative hypotonia can be the marker of the long-term success of this procedure. While the return of spasticity is the most unwanted side effect, some kind of overfitting, temporary postoperative hypotonia, can be the solution for that. CONCLUSION: For severely deformed patients, postoperative hypotonia may not be problematic, because severe spasticity makes them deformed and disabled. Deformed body will not show a definite disability from postoperative hypotonia.


Asunto(s)
Parálisis Cerebral , Hipotonía Muscular , Parálisis Cerebral/cirugía , Humanos , Hipotonía Muscular/etiología , Espasticidad Muscular/cirugía , Periodo Posoperatorio , Rizotomía
20.
Neurobiol Dis ; 124: 439-453, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30471415

RESUMEN

Traumatic brain injury (TBI) is a neurodegenerative disorder for which no effective pharmacological treatment is available. Glucagon-like peptide 1 (GLP-1) analogues such as Exenatide have previously demonstrated neurotrophic and neuroprotective effects in cellular and animal models of TBI. However, chronic or repeated administration was needed for efficacy. In this study, the pharmacokinetics and efficacy of PT302, a clinically available sustained-release Exenatide formulation (SR-Exenatide) were evaluated in a concussive mild (m)TBI mouse model. A single subcutaneous (s.c.) injection of PT302 (0.6, 0.12, and 0.024 mg/kg) was administered and plasma Exenatide concentrations were time-dependently measured over 3 weeks. An initial rapid regulated release of Exenatide in plasma was followed by a secondary phase of sustained-release in a dose-dependent manner. Short- and longer-term (7 and 30 day) cognitive impairments (visual and spatial deficits) induced by weight drop mTBI were mitigated by a single post-injury treatment with Exenatide delivered by s.c. injection of PT302 in clinically translatable doses. Immunohistochemical evaluation of neuronal cell death and inflammatory markers, likewise, cross-validated the neurotrophic and neuroprotective effects of SR-Exenatide in this mouse mTBI model. Exenatide central nervous system concentrations were 1.5% to 2.0% of concomitant plasma levels under steady-state conditions. These data demonstrate a positive beneficial action of PT302 in mTBI. This convenient single, sustained-release dosing regimen also has application for other neurological disorders, such as Alzheimer's disease, Parkinson's disease, multiple system atrophy and multiple sclerosis where prior preclinical studies, likewise, have demonstrated positive Exenatide actions.


Asunto(s)
Conmoción Encefálica/patología , Exenatida/farmacología , Fármacos Neuroprotectores/farmacología , Animales , Preparaciones de Acción Retardada , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos ICR , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA