RESUMEN
Embodying bosonic and interactive characteristics in two-dimensional space, excitons in transition metal dichalcogenides (TMDCs) have garnered considerable attention. The utilization of the strong-correlation effects, long-range transport, and valley-dependent properties requires customizing exciton decay dynamics. Vacuum-field manipulation allows radiative decay engineering without disturbing intrinsic material properties. However, conventional flat mirrors cannot customize the radiative decay landscape in TMDC's plane or support vacuum-field interference with desired spectrum and polarization properties. Here, we present a meta-mirror platform resolving the issues with more optical degrees of freedom. For neutral excitons of the monolayer MoSe2, the optical layout formed by meta-mirrors manipulated the radiative decay rate in space by 2 orders of magnitude and revealed the statistical correlation between emission intensity and spectral line width. Moreover, the anisotropic meta-mirror demonstrated polarization-dependent radiative decay control. Our platform would be promising to tailor two-dimensional distributions of lifetime, density, diffusion, and polarization of TMDC excitons in advanced opto-excitonic applications.
RESUMEN
The canonical formulation of the spin angular momentum (SAM) of light has been suggested recently as an extension of the Abraham-Minkowski controversy. However, experimental substantiations of the canonical SAM for localized fields have not been reported yet. We directly probe the locally distributed canonical SAM tailored by a plasmonic nanostructure via the valley-polarized photoluminescence of the multilayer WS_{2}. The spectrum-resolved measurement details the spin-selective Raman scattering and exciton emission beyond the conventional manner of employing circularly polarized paraxial waves.