Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Small ; 18(42): e2203874, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36116115

RESUMEN

Lithium batteries occupy the large-scale electric mobility market raising concerns about the environmental impact of cell production, especially regarding the use of poly(vinylidene difluoride) (teratogenic) and N-methyl-2-pyrrolidone (NMP, harmful). To avoid their use, an aqueous electrode processing route is utilized in which a water-soluble hybrid acrylic-fluoropolymer together with sodium carboxymethyl cellulose is used as binder, and a thin phosphate coating layer is in situ formed on the surface of the nickel-rich cathode during electrode processing. The resulting electrodes achieve a comparable performance to that of NMP-based electrodes in conventional organic carbonate-based electrolyte (LP30). Subsequently, an ionic liquid electrolyte (ILE) is employed to replace the organic electrolyte, building stable electrode/electrolyte interphases on the surface of the nickel-rich positive electrode (cathode) and metallic lithium negative electrode (anode). In such ILE, the aqueously processed electrodes achieve high cycling stability with a capacity retention of 91% after 1000 cycles (20 °C). In addition, a high capacity of more than 2.5 mAh cm-2 is achieved for high loading electrodes (≈15 mg cm-2 ) by using a modified ILE with 5% vinylene carbonate additive. A path to achieve environmentally friendly electrode manufacturing while maintaining their outstanding performance and structural integrity is demonstrated.

2.
Nano Lett ; 20(10): 7011-7019, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32648763

RESUMEN

Addition of electrolyte additives (ethylene or vinylene carbonate) is shown to dramatically improve the cycling stability and capacity retention (1600 mAh g-1) of Si nanowires (NWs) in a safe ionic liquid (IL) electrolyte (0.1LiTFSI-0.6PYR13FSI-0.3PYR13TFSI). We show, using postmortem SEM and TEM, a distinct difference in morphologies of the active material after cycling in the presence or absence of the additives. The difference in performance is shown by postmortem XPS analysis to arise from a notable increase in irreversible silicate formation in the absence of the carbonate additives. The composition of the solid electrolyte interphase (SEI) formed at the active material surface was further analyzed using XPS as a function of the IL components revealing that the SEI was primarily made up of N-, F-, and S-containing compounds from the degradation of the TFSI and FSI anions.

3.
Macromol Rapid Commun ; 37(14): 1228, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27432050

RESUMEN

Back Cover: Quaternary polymer electrolytes, containing PEO, LiTFSI, ionic liquid and ceramic filler, show higher limiting current density, conductivity and improved cycling performance in lithium metal/solid polymer electrolyte/LiFePO4 cells with respect to ternary electrolytes with either ionic liquid or ceramic filler. Further details can be found in the article by V. Sharova, G.-T. Kim, G. A. Giffin, A. Lex-Balducci,* and S. Passerini* on page 1188.

4.
Macromol Rapid Commun ; 37(14): 1188-93, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27000626

RESUMEN

In this work, the individual and combined effects of an ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and ceramic filler silicon dioxide on the thermal and electrochemical properties of poly(ethylene oxide) electrolytes have been investigated. The electrolyte containing both components has the lowest glass transition (-60 °C) and melting temperatures (27 °C), the highest conductivity at any investigated temperature, and the highest limiting current density (at 40 °C). This solid polymer electrolyte also exhibits the best long-term cycling performance in Li/LiFePO4 cells.


Asunto(s)
Líquidos Iónicos/química , Polietilenglicoles/química , Dióxido de Silicio/química , Conductividad Eléctrica , Técnicas Electroquímicas , Electrólitos/química , Temperatura
5.
Sensors (Basel) ; 16(9)2016 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-27589749

RESUMEN

The integration of fiber Bragg grating (FBG) sensors in lithium-ion cells for in-situ and in-operando temperature monitoring is presented herein. The measuring of internal and external temperature variations was performed through four FBG sensors during galvanostatic cycling at C-rates ranging from 1C to 8C. The FBG sensors were placed both outside and inside the cell, located in the center of the electrochemically active area and at the tab-electrode connection. The internal sensors recorded temperature variations of 4.0 ± 0.1 °C at 5C and 4.7 ± 0.1 °C at 8C at the center of the active area, and 3.9 ± 0.1 °C at 5C and 4.0 ± 0.1 °C at 8C at the tab-electrode connection, respectively. This study is intended to contribute to detection of a temperature gradient in real time inside a cell, which can determine possible damage in the battery performance when it operates under normal and abnormal operating conditions, as well as to demonstrate the technical feasibility of the integration of in-operando microsensors inside Li-ion cells.

6.
Int J Mol Sci ; 15(5): 8122-37, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24815072

RESUMEN

In this work, the electrochemical stability and lithium plating/stripping performance of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) are reported, by investigating the behavior of Li metal electrodes in symmetrical Li/electrolyte/Li cells. Electrochemical impedance spectroscopy measurements and galvanostatic cycling at different temperatures are performed to analyze the influence of temperature on the stabilization of the solid electrolyte interphase (SEI), showing that TFSI-based ionic liquids (ILs) rank among the best candidates for long-lasting Li-air cells.


Asunto(s)
Suministros de Energía Eléctrica , Líquidos Iónicos/química , Electrodos , Electrólitos/química , Hidrocarburos Fluorados/química , Imidas/química , Litio/química , Pirrolidinas/química
7.
ACS Appl Mater Interfaces ; 15(21): 25462-25472, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37204404

RESUMEN

Rechargeable lithium-metal batteries (LMBs) are anticipated to enable enhanced energy densities, which can be maximized when minimizing the amount of excess lithium in the cell down to zero, also referred to as "zero excess" LMBs. In this case, the only source of lithium is the positive electrode active material─just like in lithium-ion batteries. However, this requires the fully reversible deposition of metallic lithium, i.e., the Coulombic efficiency (CE) approaching 100%. Herein, the lithium plating from ionic liquid-based electrolytes, composed of N-butyl-N-methyl pyrrolidinium bis(fluorosulfonyl)imide (PYR14FSI) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as the conducting salt, on nickel current collectors is investigated via a comprehensive set of electrochemical techniques coupled with operando and in situ atomic force microscopy and ex situ X-ray photoelectron spectroscopy. The investigation involves the use of fluoroethylene carbonate (FEC) as an electrolyte additive. The results show that an elevated LiTFSI concentration leads to a lower overpotential for the lithium nucleation and a more homogeneous deposition. The incorporation of FEC results in a further lowered overpotential and a stabilized solid electrolyte interphase, enabling a substantially enhanced CE.

8.
Adv Sci (Weinh) ; 9(18): e2105882, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35478355

RESUMEN

To meet future energy demands, currently, dominant lithium-ion batteries (LIBs) must be supported by abundant and cost-effective alternative battery materials. Potassium-ion batteries (KIBs) are promising alternatives to LIBs because KIB materials are abundant and because KIBs exhibit intercalation chemistry like LIBs and comparable energy densities. In pursuit of superior batteries, designing and developing highly efficient electrode materials are indispensable for meeting the requirements of large-scale energy storage applications. Despite using graphite anodes in KIBs instead of in sodium-ion batteries (NIBs), developing suitable KIB cathodes is extremely challenging and has attracted considerable research attention. Among the various cathode materials, layered metal oxides have attracted considerable interest owing to their tunable stoichiometry, high specific capacity, and structural stability. Therefore, the recent progress in layered metal-oxide cathodes is comprehensively reviewed for application to KIBs and the fundamental material design, classification, phase transitions, preparation techniques, and corresponding electrochemical performance of KIBs are presented. Furthermore, the challenges and opportunities associated with developing layered oxide cathode materials are presented for practical application to KIBs.

9.
ChemSusChem ; 15(10): e202200038, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35294795

RESUMEN

To tackle the poor chemical/electrochemical stability of Li1+x Alx Ti2-x (PO4 )3 (LATP) against Li and poor electrode|electrolyte interfacial contact, a thin poly[2,3-bis(2,2,6,6-tetramethylpiperidine-N-oxycarbonyl)norbornene] (PTNB) protection layer is applied with a small amount of ionic liquid electrolyte (ILE). This enables study of the impact of ILEs with modulated composition, such as 0.3 lithium bis(fluoromethanesulfonyl)imide (LiFSI)-0.7 N-butyl-N-methylpyrrolidinium bis(fluoromethanesulfonyl)imide (Pyr14 FSI) and 0.3 LiFSI-0.35 Pyr14 FSI-0.35 N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14 TFSI), on the interfacial stability of PTNB@Li||PTNB@Li and PTNB@Li||LiNi0.8 Co0.1 Mn0.1 O2 cells. The addition of Pyr14 TFSI leads to better thermal and electrochemical stability. Furthermore, Pyr14 TFSI facilitates the formation of a more stable Li|hybrid electrolyte interface, as verified by the absence of lithium "pitting corrosion islands" and fibrous dendrites, leading to a substantially extended lithium stripping-plating cycling lifetime (>900 h). Even after 500 cycles (0.5C), PTNB@Li||LiNi0.8 Co0.1 Mn0.1 O2 cells achieve an impressive capacity retention of 89.1 % and an average Coulombic efficiency of 98.6 %. These findings reveal a feasible strategy to enhance the interfacial stability between Li and LATP by selectively mixing different ionic liquids.

10.
ACS Appl Mater Interfaces ; 13(45): 53810-53817, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34739208

RESUMEN

NASICON-type Li1+xAlxTi2-x(PO4)3 (LATP) is a promising solid electrolyte (SE) candidate for next-generation solid-state batteries. However, its use in solid-state composite electrodes is inhibited by its stiffness, which results in poor interparticle contact unless high-temperature treatments are applied. The poor LATP-LATP and LATP-active material in the positive electrode (cathode) composite produced at ambient temperature yield poor ionic conductivity, impeding the electrode's performance. Herein, we focus on the optimization of the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 (NCM811)-LATP composite electrodes made by tape casting, taking advantage of a small fraction of an ionic liquid electrolyte (ILE) filling the composite cathode porosity. The incorporated LATP particles are found to closely surround the large NCM811 secondary particles, partially filling the composite electrode pores and resulting in a porosity reduction from 37 vol % (NCM811 only) to 32 vol % (NCM811-LATP). After filling up the majority of the electrode porosity with ILE, the NCM811-LATP composite electrodes offer improved capacity retention upon both long-term cycling tests (>99.3% after 200 cycles) and high-rate tests (>70% at 2 C-rate), due to the more stable LATP|NCM811 interface, and facilitated Li+ diffusion in the composite electrode bulk. Results obtained from proof-of-concepts monopolar (3.0-4.3 V) and bipolar-stacked (6.0-8.6 V) cells are reported.

11.
ChemSusChem ; 14(2): 655-661, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-32946204

RESUMEN

The development of new materials for tomorrow's electrochemical energy storage technologies, based on thoroughly designed molecular architectures is at the forefront of materials research. In this line, we report herein the development of a new class of organic lithium-ion battery electrolytes, thermotropic liquid crystalline single-ion conductors, for which the single-ion charge transport is decoupled from the molecular dynamics (i. e., obeys Arrhenius-type conductivity) just like in inorganic (single-)ion conductors. Focusing on an in-depth understanding of the structure-to-transport interplay and the demonstration of the proof-of-concept, we provide also strategies for their further development, as illustrated by the introduction of additional ionic groups to increase the charge carrier density, which results in a substantially enhanced ionic conductivity especially at lower temperatures.

12.
ChemSusChem ; 12(22): 4946-4952, 2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31535779

RESUMEN

An innovative one-pot synthetic process that uses water as the only processing solvent was used to obtain ionic liquids (ILs) in a yield of approximately 95 mol % and purity greater than 99.3 wt % (<2 ppm each of lithium, bromide and moisture) in a processing time of 1 h. Since no heating is needed for carrying out the reaction and no purification through sorbents is required, energy, time and chemicals can be saved to minimize waste production. The physicochemical and electrochemical validation, including tests in batteries, reported herein shows that the above-mentioned ILs have properties analogous to those of ILs prepared by standard reported procedures and show high performance without any further purification step through sorbents. These characteristics, in combination with low cost, easy execution and scale-up, sustainability and versatility, make the one-pot process even more appealing, especially for industrial-scale applications.

13.
ACS Appl Mater Interfaces ; 11(30): 26994-27003, 2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31290644

RESUMEN

Despite layered LiNixCoyMnzO2 having drawn much attention for their high capacity and high energy density, they still endure strong capacity decay upon prolonged cycling and high C-rates, primarily due to sluggish Li+ and charge-transfer kinetics and detrimental parasitic reactions with the electrolyte. To address these issues, application of a surface-coating layer made of V2O5/LiV3O8 on LiNi0.4Co0.2Mn0.4O2 (V-NCM) is pursued. Benefiting from the ionic conductivity of LiV3O8 and the electronic conductivity of V2O5, resulting in both enhanced Li+ diffusion and charge-transfer kinetics, the coated material offers significantly improved C-rate capability. Additionally, better long-term cycling performance is achieved mostly due to the mitigated parasitic reactions at the electrode/electrolyte interface that result in lower structural degradation. As a result, Li/V-NCM cells deliver over 100 mA h g-1 capacity at 10 C and also achieve 86.1% (2 C) and 94.1% (10 C) capacity retention after 200 cycles. These V-NCM cells operate quite stably even at elevated temperature, that is, 40 and 60 °C. The coating strategy herein reported may also be useful to enhance the cycling stability and C-rate capability of other layered cathode materials.

14.
ACS Nano ; 13(8): 9511-9519, 2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31335123

RESUMEN

The current insertion anode chemistries are approaching their capacity limits; thus, alloying reaction anode materials with high theoretical specific capacity are investigated as potential alternatives for lithium-ion batteries. However, their performance is far from being satisfactory because of the large volume change and severe capacity decay that occurs upon lithium alloying and dealloying processes. To address these problems, we propose and demonstrate a versatile strategy that makes use of the electronic reaction confinement via the synthesis of ultrasmall Ge nanoparticles (10 nm) uniformly confined in a matrix of larger spherical carbon particles (Ge⊂C spheres). This architecture provides free pathways for electron transport and Li+ diffusion, allowing for the alloying reaction of the Ge nanoparticles. The thickness change of electrodes containing such a material, monitored byan in situ electrochemical dilatometer, is rather limited and reversible, confirming the excellent mechanical integrity of the confined electrode. As a result, these electrodes exhibit high reversible capacity (1310 mAh g-1, 0.1C) and very impressive cycling ability (92% after 1000 cycles at 2C). A prototype device employing such an alloying electrode material in combination with LiNi0.8Mn0.1Co0.1O2 offers a high energy density of 250 Wh kg-1.

15.
Membranes (Basel) ; 8(3)2018 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-29996562

RESUMEN

Li⁺-conducting polyethylene oxide-based membranes incorporating N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide are used as electrolyte separators for all-solid-state lithium polymer batteries operating at medium-high temperatures. The incorporation of the ionic liquid remarkably improves the thermal, ion-transport and interfacial properties of the polymer electrolyte, which, in combination with the wide electrochemical stability even at medium-high temperatures, allows high current rates without any appreciable lithium anode degradation. Battery tests carried out at 80 °C have shown excellent cycling performance and capacity retention, even at high rates, which are never tackled by ionic liquid-free polymer electrolytes. No dendrite growth onto the lithium metal anode was observed.

16.
ChemSusChem ; 11(3): 562-573, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29171938

RESUMEN

Increasing the environmental benignity of lithium-ion batteries is one of the greatest challenges for their large-scale deployment. Toward this end, we present herein a strategy to enable the aqueous processing of high-voltage LiNi0.5 Mn1.5 O4 (LNMO) cathodes, which are considered highly, if not the most, promising for the realization of cobalt-free next-generation lithium-ion cathodes. Combining the addition of phosphoric acid with the cross-linking of sodium carboxymethyl cellulose by means of citric acid, aqueously processed electrodes with excellent performance are produced. The combined approach offers synergistic benefits, resulting in stable cycling performance and excellent coulombic efficiency (98.96 %) in lithium-metal cells. Remarkably, this approach can be easily incorporated into standard electrode preparation processes with no additional processing step.


Asunto(s)
Suministros de Energía Eléctrica , Electrodos , Tecnología Química Verde , Compuestos de Litio/química , Manganeso/química , Níquel/química , Carboximetilcelulosa de Sodio/química , Ácido Cítrico/química , Microscopía Electrónica de Rastreo , Ácidos Fosfóricos/química , Difracción de Polvo , Agua/química
17.
ACS Nano ; 11(6): 5933-5943, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28530820

RESUMEN

The electrochemical behavior of binder-free, germanium and silicon nanowires as high-capacity anode materials for lithium-ion battery systems is investigated in an ionic liquid electrolyte. Cyclic voltammetry, cycling tests, and impedance spectroscopy reveal a highly reversible lithium alloying/dealloying process, as well as promising compatibility between the Ge and Si materials and the electrolyte components. Reversible capacities of 1400 and 2200 mA h g-1 are delivered by the Ge and Si anodes, respectively, matching the values exhibited in conventional organic solutions. Furthermore, impressive extended cycling performance is obtained in comparison to previous research on Li alloying anodes in ionic liquids, with capacity retention overcoming 50% for Si after 500 cycles and 67% for Ge after 1000 cycles, at a current rate of 0.5C. This stable long-term cycling arises due to the ability of the electrolyte formulation to promote the transformation of the nanowires into durable porous network structures of Ge or Si nanoligaments, which can withstand the extreme volume changes associated with lithiation/delithiation. Remarkable capacity is exhibited also by composite Ge and Si nanowire electrodes. Preliminary tests with lithium cobalt oxide cathodes clearly demonstrate the feasibility of Ge and Si nanowires in full batteries.

18.
ChemSusChem ; 9(10): 1112-7, 2016 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-27098345

RESUMEN

The aqueous processing of lithium-ion battery (LIB) electrodes has the potential to notably decrease the battery processing costs and paves the way for a sustainable and environmentally benign production (and recycling) of electrochemical energy storage devices. Although this concept has already been adopted for the industrial production of LIB graphite anodes, the performance decay of cathode electrodes based on transition metal oxides processed in aqueous environments is still an open issue. In this study, we show that the addition of small quantities of phosphoric acid into the cathodic slurry yields Li[Ni0.33 Mn0.33 Co0.33 ]O2 electrodes that have an outstanding electrochemical performance in lithium-ion cells.


Asunto(s)
Cobalto/química , Litio/química , Manganeso/química , Níquel/química , Óxidos/química , Agua/química , Suministros de Energía Eléctrica , Electroquímica , Electrodos
19.
ChemSusChem ; 9(11): 1290-8, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27159254

RESUMEN

A new lithium-ion battery chemistry is presented based on a conversion-alloying anode material, a carbon-coated Fe-doped ZnO (TMO-C), and a LiNi1/3 Mn1/3 Co1/3 O2 (NMC) cathode. Both electrodes were fabricated using an environmentally friendly cellulose-based binding agent. The performance of the new lithium-ion battery was evaluated with a conventional, carbonate-based electrolyte (ethylene carbonate:diethyl carbonate-1 m lithium hexafluorophosphate, EC:DEC 1 m LiPF6 ) and an ionic liquid (IL)-based electrolyte (N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide-0.2 m lithium bis(trifluoromethanesulfonyl)imide, Pyr14 TFSI 0.2 m LiTFSI), respectively. Galvanostatic charge/discharge tests revealed a reduced rate capability of the TMO-C/Pyr14 TFSI 0.2 m LiTFSI/NMC full-cell compared to the organic electrolyte, but the coulombic efficiency was significantly enhanced. Moreover, the IL-based electrolyte substantially improves the safety of the system due to a higher thermal stability of the formed anodic solid electrolyte interphase and the IL electrolyte itself. While the carbonate-based electrolyte shows sudden degradation reactions, the IL exhibits a slowly increasing heat flow, which does not constitute a serious safety risk.


Asunto(s)
Suministros de Energía Eléctrica , Tecnología Química Verde , Litio/química , Seguridad , Dietil Pirocarbonato/análogos & derivados , Dietil Pirocarbonato/química , Dioxolanos/química , Estabilidad de Medicamentos , Electrodos , Compuestos Organometálicos/química , Temperatura
20.
Polymers (Basel) ; 8(8)2016 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-30974553

RESUMEN

This work elucidates the manufacturing of lithium titanate (Li4Ti5O12, LTO) electrodes via the aqueous process using sodium carboxymethylcellulose (CMC), guar gum (GG) or pectin as binders. To avoid aluminum current collector dissolution due to the rising slurries' pH, phosphoric acid (PA) is used as a pH-modifier. The electrodes are characterized in terms of morphology, adhesion strength and electrochemical performance. In the absence of phosphoric acid, hydrogen evolution occurs upon coating the slurry onto the aluminum substrate, resulting in the formation of cavities in the coated electrode, as well as poor cohesion on the current collector itself. Consequently, the electrochemical performance of the coated electrodes is also improved by the addition of PA in the slurries. At a 5C rate, CMC/PA-based electrodes delivered 144 mAh·g-1, while PA-free electrodes reached only 124 mAh·g-1. When GG and pectin are used as binders, the adhesion of the coated layers to the current collector is reduced; however, the electrodes show comparable, if not slightly better, electrochemical performance than those based on CMC. Full lithium-ion cells, utilizing CMC/PA-made Li[Ni0.33Mn0.33Co0.33]O2 (NMC) cathodes and LTO anodes offer a stable discharge capacity of ~120 mAh·g-1(NMC) with high coulombic efficiencies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA