Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 440
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(9): e2314620121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38381784

RESUMEN

Photon-controlled pyroptosis activation (PhotoPyro) is a promising technique for cancer immunotherapy due to its noninvasive nature, precise control, and ease of operation. Here, we report that biomolecular photoredox catalysis in cells might be an important mechanism underlying PhotoPyro. Our findings reveal that the photocatalyst lutetium texaphyrin (MLu) facilitates rapid and direct photoredox oxidation of nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide phosphate, and various amino acids, thereby triggering pyroptosis through the caspase 3/GSDME pathway. This mechanism is distinct from the well-established role of MLu as a photodynamic therapy sensitizer in cells. Two analogs of MLu, bearing different coordinated central metal cations, were also explored as controls. The first control, gadolinium texaphyrin (MGd), is a weak photocatalyst but generates reactive oxygen species (ROS) efficiently. The second control, manganese texaphyrin (MMn), is ineffective as both a photocatalyst and a ROS generator. Neither MGd nor MMn was found to trigger pyroptosis under the conditions where MLu was active. Even in the presence of a ROS scavenger, treating MDA-MB-231 cells with MLu at concentrations as low as 50 nM still allows for pyroptosis photo-activation. The present findings highlight how biomolecular photoredox catalysis could contribute to pyroptosis activation by mechanisms largely independent of ROS.


Asunto(s)
Metaloporfirinas , Piroptosis , Especies Reactivas de Oxígeno/metabolismo
2.
Chem Rev ; 124(5): 2699-2804, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38422393

RESUMEN

The ability to gain spatiotemporal information, and in some cases achieve spatiotemporal control, in the context of drug delivery makes theranostic fluorescent probes an attractive and intensely investigated research topic. This interest is reflected in the steep rise in publications on the topic that have appeared over the past decade. Theranostic fluorescent probes, in their various incarnations, generally comprise a fluorophore linked to a masked drug, in which the drug is released as the result of certain stimuli, with both intrinsic and extrinsic stimuli being reported. This release is then signaled by the emergence of a fluorescent signal. Importantly, the use of appropriate fluorophores has enabled not only this emerging fluorescence as a spatiotemporal marker for drug delivery but also has provided modalities useful in photodynamic, photothermal, and sonodynamic therapeutic applications. In this review we highlight recent work on theranostic fluorescent probes with a particular focus on probes that are activated in tumor microenvironments. We also summarize efforts to develop probes for other applications, such as neurodegenerative diseases and antibacterials. This review celebrates the diversity of designs reported to date, from discrete small-molecule systems to nanomaterials. Our aim is to provide insights into the potential clinical impact of this still-emerging research direction.


Asunto(s)
Colorantes Fluorescentes , Medicina de Precisión , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Fluorescencia , Nanomedicina Teranóstica
3.
Proc Natl Acad Sci U S A ; 120(21): e2304081120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37186828

RESUMEN

Chemotherapy typically destroys the tumor mass but rarely eradicates the cancer stem cells (CSCs) that can drive metastatic recurrence. A key current challenge is finding ways to eradicate CSCs and suppress their characteristics. Here, we report a prodrug, Nic-A, created by combining a carbonic anhydrase IX (CAIX) inhibitor, acetazolamide, with a signal transducer and transcriptional activator 3 (STAT3) inhibitor, niclosamide. Nic-A was designed to target triple-negative breast cancer (TNBC) CSCs and was found to inhibit both proliferating TNBC cells and CSCs via STAT3 dysregulation and suppression of CSC-like properties. Its use leads to a decrease in aldehyde dehydrogenase 1 activity, CD44high/CD24low stem-like subpopulations, and tumor spheroid-forming ability. TNBC xenograft tumors treated with Nic-A exhibited decreased angiogenesis and tumor growth, as well as decreased Ki-67 expression and increased apoptosis. In addition, distant metastases were suppressed in TNBC allografts derived from a CSC-enriched population. This study thus highlights a potential strategy for addressing CSC-based cancer recurrence.


Asunto(s)
Profármacos , Neoplasias de la Mama Triple Negativas , Humanos , Línea Celular Tumoral , Neoplasias de la Mama Triple Negativas/metabolismo , Niclosamida/farmacología , Niclosamida/metabolismo , Niclosamida/uso terapéutico , Profármacos/uso terapéutico , Recurrencia Local de Neoplasia/patología , Factores de Transcripción/metabolismo , Células Madre Neoplásicas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Proc Natl Acad Sci U S A ; 119(34): e2210504119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969782

RESUMEN

Elucidating the underlying photochemical mechanisms of action (MoA) of photodynamic therapy (PDT) may allow its efficacy to be improved and could set the stage for the development of new classes of PDT photosensitizers. Here, we provide evidence that "photoredox catalysis in cells," wherein key electron transport pathways are disrupted, could constitute a general MoA associated with PDT. Taking the cellular electron donor nicotinamide adenine dinucleotide as an example, we have found that well-known photosensitizers, such as Rose Bengal, BODIPY, phenoselenazinium, phthalocyanine, and porphyrin derivatives, are able to catalyze its conversion to NAD+. This MoA stands in contrast to conventional type I and type II photoactivation mechanisms involving electron and energy transfer, respectively. A newly designed molecular targeting photocatalyst (termed CatER) was designed to test the utility of this mechanism-based approach to photosensitizer development. Photoexcitation of CatER induces cell pyroptosis via the caspase 3/GSDME pathway. Specific epidermal growth factor receptor positive cancer cell recognition, high signal-to-background ratio tumor imaging (SBRTI = 12.2), and good tumor growth inhibition (TGI = 77.1%) are all hallmarks of CatER. CatER thus constitutes an effective near-infrared pyroptotic cell death photo-inducer. We believe the present results will provide the foundation for the synthesis of yet-improved phototherapeutic agents that incorporate photocatalytic chemistry into their molecular design.


Asunto(s)
Antineoplásicos , Neoplasias , Fotoquimioterapia , Fármacos Fotosensibilizantes , Antineoplásicos/farmacología , Catálisis , Línea Celular Tumoral , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Porfirinas/farmacología
5.
J Am Chem Soc ; 146(13): 8991-9003, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38513217

RESUMEN

Though immunogenic cell death (ICD) has garnered significant attention in the realm of anticancer therapies, effectively stimulating strong immune responses with minimal side effects in deep-seated tumors remains challenging. Herein, we introduce a novel self-assembled near-infrared-light-activated ruthenium(II) metallacycle, Ru1105 (λem = 1105 nm), as a first example of a Ru(II) supramolecular ICD inducer. Ru1105 synergistically potentiates immunomodulatory responses and reduces adverse effects in deep-seated tumors through multiple regulated approaches, including NIR-light excitation, increased reactive oxygen species (ROS) generation, selective targeting of tumor cells, precision organelle localization, and improved tumor penetration/retention capabilities. Specifically, Ru1105 demonstrates excellent depth-activated ROS production (∼1 cm), strong resistance to diffusion, and anti-ROS quenching. Moreover, Ru1105 exhibits promising results in cellular uptake and ROS generation in cancer cells and multicellular tumor spheroids. Importantly, Ru1105 induces more efficient ICD in an ultralow dose (10 µM) compared to the conventional anticancer agent, oxaliplatin (300 µM). In vivo experiments further confirm Ru1105's potency as an ICD inducer, eliciting CD8+ T cell responses and depleting Foxp3+ T cells with minimal adverse effects. Our research lays the foundation for the design of secure and exceptionally potent metal-based ICD agents in immunotherapy.


Asunto(s)
Antineoplásicos , Neoplasias , Rutenio , Humanos , Rutenio/farmacología , Especies Reactivas de Oxígeno , Muerte Celular Inmunogénica , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Lisosomas , Línea Celular Tumoral
6.
J Am Chem Soc ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38959476

RESUMEN

Immuno-photodynamic therapy (IPDT) has emerged as a new modality for cancer treatment. Novel photosensitizers can help achieve the promise inherent in IPDT, namely, the complete eradication of a tumor without recurrence. We report here a small molecule photosensitizer conjugate, LuCXB. This IPDT agent integrates a celecoxib (cyclooxygenase-2 inhibitor) moiety with a near-infrared absorbing lutetium texaphyrin photocatalytic core. In aqueous environments, the two components of LuCXB are self-associated through inferred donor-acceptor interactions. A consequence of this intramolecular association is that upon photoirradiation with 730 nm light, LuCXB produces superoxide radicals (O2-•) via a type I photodynamic pathway; this provides a first line of defense against the tumor while promoting IPDT. For in vivo therapeutic applications, we prepared a CD133-targeting, aptamer-functionalized exosome-based nanophotosensitizer (Ex-apt@LuCXB) designed to target cancer stem cells. Ex-apt@LuCXB was found to display good photosensitivity, acceptable biocompatibility, and robust tumor targetability. Under conditions of photoirradiation, Ex-apt@LuCXB acts to amplify IPDT while exerting a significant antitumor effect in both liver and breast cancer mouse models. The observed therapeutic effects are attributed to a synergistic mechanism that combines antiangiogenesis and photoinduced cancer immunotherapy.

7.
Anal Chem ; 96(22): 9132-9140, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38764163

RESUMEN

Gold nanorods (AuNRs) have been considered highly compelling materials for early cancer diagnosis and have aroused a burgeoning fascination among the biomedical sectors. By leveraging the versatile tunable optical properties of AuNRs, herein, we have developed a novel tumor-targeted dual-modal nanoprobe (FFA) that exhibits excellent bioluminescence and photoacoustic imaging performance for early tumor diagnosis. FFA has been synthesized by anchoring the recombinant bioluminescent firefly luciferase protein (Fluc) on the folate-conjugated AuNRs via the PEG linker. TEM images and UV-vis studies confirm the nanorod morphology and successful conjugation of the biomolecules to AuNRs. The nanoprobe FFA relies on the ability of the folate module to target the folate receptor-positive tumor cells actively, and simultaneously, the Fluc module facilitates excellent bioluminescent properties in physiological conditions. The success of chemical engineering in the present study enables stronger bioluminescent signals in the folate receptor-positive cells (Skov3, Hela, and MCF-7) than in folate receptor-negative cells (A549, 293T, MCF-10A, and HepG2). Additionally, the AuNRs induced strong photoacoustic conversion performance, enhancing the resolution of tumor imaging. No apparent toxicity was detected at the cellular and mouse tissue levels, manifesting the biocompatibility nature of the nanoprobe. Prompted by the positive merits of FFA, the in vivo animal studies were performed, and a notable enhancement was observed in the bioluminescent/photoacoustic intensity of the nanoprobe in the tumor region compared to that in the folate-blocking region. Therefore, this synergistic dual-modal bioluminescent and photoacoustic imaging platform holds great potential as a tumor-targeted contrast agent for early tumor diagnosis with high-performance imaging information.


Asunto(s)
Medios de Contraste , Oro , Mediciones Luminiscentes , Nanotubos , Técnicas Fotoacústicas , Técnicas Fotoacústicas/métodos , Humanos , Nanotubos/química , Oro/química , Animales , Medios de Contraste/química , Ratones , Ratones Desnudos , Imagen Óptica , Neoplasias/diagnóstico por imagen , Femenino , Luciferasas/química , Luciferasas/metabolismo
8.
Inorg Chem ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937959

RESUMEN

Type I photosensitizers offer an advantage in photodynamic therapy (PDT) due to their diminished reliance on oxygen levels, thus circumventing the challenge of hypoxia commonly encountered in PDT. In this study, we present the synthesis and comprehensive characterization of a novel type I photosensitizer derived from a cyclometalated Ir(III)-rhodamine complex. Remarkably, the complex exhibits a shift in absorption and fluorescence, transitioning from "off" to "on" states in aprotic and protic solvents, respectively, contrary to initial expectations. Upon exposure to light, the complex demonstrates the effective generation of O2- and ·OH radicals via the type I mechanism. Additionally, it exhibits notable photodynamic antibacterial activity against both Gram-positive and Gram-negative bacteria, demonstrated through in vitro and in vivo experiments. This research offers valuable insights for the development of novel type I photosensitizers.

9.
Chem Rev ; 122(1): 209-268, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34664951

RESUMEN

In vivo imaging in the second near-infrared window (NIR-II, 1000-1700 nm), which enables us to look deeply into living subjects, is producing marvelous opportunities for biomedical research and clinical applications. Very recently, there has been an upsurge of interdisciplinary studies focusing on developing versatile types of inorganic/organic fluorophores that can be used for noninvasive NIR-IIa/IIb imaging (NIR-IIa, 1300-1400 nm; NIR-IIb, 1500-1700 nm) with near-zero tissue autofluorescence and deeper tissue penetration. This review provides an overview of the reports published to date on the design, properties, molecular imaging, and theranostics of inorganic/organic NIR-IIa/IIb fluorophores. First, we summarize the design concepts of the up-to-date functional NIR-IIa/IIb biomaterials, in the order of single-walled carbon nanotubes (SWCNTs), quantum dots (QDs), rare-earth-doped nanoparticles (RENPs), and organic fluorophores (OFs). Then, these novel imaging modalities and versatile biomedical applications brought by these superior fluorescent properties are reviewed. Finally, challenges and perspectives for future clinical translation, aiming at boosting the clinical application progress of NIR-IIa and NIR-IIb imaging technology are highlighted.


Asunto(s)
Nanotubos de Carbono , Medicina de Precisión , Colorantes Fluorescentes , Humanos , Imagen Molecular , Imagen Óptica/métodos
10.
Bioorg Med Chem ; 100: 117588, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38295487

RESUMEN

Microsatellite instability (MSI) is a hypermutable condition caused by DNA mismatch repair system defects, contributing to the development of various cancer types. Recent research has identified Werner syndrome ATP-dependent helicase (WRN) as a promising synthetic lethal target for MSI cancers. Herein, we report the first discovery of thiophen-2-ylmethylene bis-dimedone derivatives as novel WRN inhibitors for MSI cancer therapy. Initial computational analysis and biological evaluation identified a new scaffold for a WRN inhibitor. Subsequent SAR study led to the discovery of a highly potent WRN inhibitor. Furthermore, we demonstrated that the optimal compound induced DNA damage and apoptotic cell death in MSI cancer cells by inhibiting WRN. This study provides a new pharmacophore for WRN inhibitors, emphasizing their therapeutic potential for MSI cancers.


Asunto(s)
Inestabilidad de Microsatélites , Neoplasias , Tiofenos , Humanos , Ciclohexanonas , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Helicasa del Síndrome de Werner/antagonistas & inhibidores , Helicasa del Síndrome de Werner/metabolismo , Tiofenos/química , Tiofenos/farmacología
11.
Chem Soc Rev ; 52(1): 30-46, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36511945

RESUMEN

Mechanical stimulation utilizing deep tissue-penetrating and focusable energy sources, such as ultrasound and magnetic fields, is regarded as an emerging patient-friendly and effective therapeutic strategy to overcome the limitations of conventional cancer therapies based on fundamental external stimuli such as light, heat, electricity, radiation, or microwaves. Recent efforts have suggested that mechanical stimuli-driven cancer therapy (henceforth referred to as "mechanical cancer therapy") could provide a direct therapeutic effect and intelligent control to augment other anti-cancer systems as a synergistic combinational cancer treatment. This review article highlights the latest advances in mechanical cancer therapy to present a novel perspective on the fundamental principles of ultrasound- and magnetic field-mediated mechanical forces, including compression, tension, shear force, and torque, that can be generated in a cellular microenvironment using mechanical stimuli-activated functional materials. Additionally, this article will shed light on mechanical cancer therapy and inspire future research to pursue the development of ultrasound- and magnetic-field-activated materials and their applications in this field.


Asunto(s)
Neoplasias , Humanos , Neoplasias/terapia , Fenómenos Mecánicos , Campos Magnéticos , Microambiente Tumoral
12.
Chem Soc Rev ; 52(13): 4488-4514, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37338931

RESUMEN

One-dimensional (1-D) nanomaterials possess unique shape-dependent phyicochemical properties and are increasingly recognized as promising materials for nanotechnology. 1-D nanomaterials can be classified according to their shape, such as nanorods, nanotubes, nanowires, self-assembled nanochains, etc., and have been applied in electronics, photonics, and catalysis. The biological characteristics of 1-D nanomaterials, including high drug loading efficiency, prolonged blood circulation, the ability to capture cancer cells, unique cellular uptake mechanisms, efficient photothermal conversion, and material tunability, have aided in extending their potential to biomedical applications, particularly in cancer therapy and diagnosis. This review highlights a novel perspective on emerging 1-D nanomaterials for cancer therapy and diagnosis by introducing the definition of 1-D nanomaterials, their shape-dependent physicochemical properties, biomedical applications, and recent advances in cancer therapy and diagnosis. This review also proposes unexplored potential nanomaterial types and therapeutic applications for 1-D nanomaterials. In particular, the most significant and exciting advances in recent years, including ultrasound-enabled sonodynamic therapy, magnetic field-based therapy, and bioresponsive 1-D nanomaterials for intracellular self-assembly in situ, are discussed along with novel therapeutic concepts, such as piezoelectric 1-D nanomaterials, nanozyme-based nanomedicine, and others.


Asunto(s)
Nanoestructuras , Neoplasias , Nanoestructuras/uso terapéutico , Nanoestructuras/química , Nanotecnología/métodos , Nanomedicina , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico
13.
Chem Soc Rev ; 52(12): 3955-3972, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37218295

RESUMEN

Ferroptosis, an iron-dependent programmed cell death mechanism, is regulated by distinct molecular pathways of lipid peroxidation caused by intracellular iron supplementation and glutathione (GSH) synthesis inhibition. It has attracted a great deal of attention as a viable alternative to typical apoptosis-based cancer therapy that exhibits drug resistance. For efficient therapeutic utilization of such a unique and desirable mechanism, precise control using various stimuli to activate the administered nanocarriers is essential. Specific conditions in the tumor microenvironment (e.g., acidic pH, high level of ROS and GSH, hypoxia, etc.) can be exploited as endogenous stimuli to ensure high specificity of the tumor site. Maximized spatiotemporal controllability can be assured by utilizing external energy sources (e.g., magnetic fields, ultrasound, microwaves, light, etc.) as exogenous stimuli that can provide on-demand remote controllability for customized deep tumor therapy with a low inter-patient variation. Strikingly, the utilization of dual endogenous and/or exogenous stimuli provides a new direction for efficient cancer therapy. This review highlights recent advances in the utilization of various endogenous and exogenous stimuli to activate the reactions of nanocarriers for ferroptosis-based cancer therapy that can inspire the field of cancer therapy, particularly for the treatment of intractable tumors.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Apoptosis , Hierro/metabolismo , Microambiente Tumoral
14.
Chem Soc Rev ; 52(3): 879-920, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36637396

RESUMEN

Cancer remains as one of the most significant health problems, with approximately 19 million people diagnosed worldwide each year. Chemotherapy is a routinely used method to treat cancer patients. However, current treatment options lack the appropriate selectivity for cancer cells, are prone to resistance mechanisms, and are plagued with dose-limiting toxicities. As such, researchers have devoted their attention to developing prodrug-based strategies that have the potential to overcome these limitations. This tutorial review highlights recently developed prodrug strategies for cancer therapy. Prodrug examples that provide an integrated diagnostic (fluorescent, photoacoustic, and magnetic resonance imaging) response, which are referred to as theranostics, are also discussed. Owing to the non-invasive nature of light (and X-rays), we have discussed external excitation prodrug strategies as well as examples of activatable photosensitizers that enhance the precision of photodynamic therapy/photothermal therapy. Activatable photosensitizers/photothermal agents can be seen as analogous to prodrugs, with their phototherapeutic properties at a specific wavelength activated in the presence of disease-related biomarkers. We discuss each design strategy and illustrate the importance of targeting biomarkers specific to the tumour microenvironment and biomarkers that are known to be overexpressed within cancer cells. Moreover, we discuss the advantages of each approach and highlight their inherent limitations. We hope in doing so, the reader will appreciate the current challenges and available opportunities in the field and inspire subsequent generations to pursue this crucial area of cancer research.


Asunto(s)
Neoplasias , Fotoquimioterapia , Profármacos , Humanos , Profármacos/farmacología , Profármacos/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fotoquimioterapia/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
15.
Angew Chem Int Ed Engl ; 63(6): e202318459, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38105412

RESUMEN

Intravital fluorescence imaging of functional osteoclasts within their intact disease context provides valuable insights into the intricate biology at the microscopic level, facilitating the development of therapeutic approaches for osteoclast-associated bone diseases. However, there is a lack of studies investigating osteoclast activity within deep-seated bone lesions using appropriate fluorescent probes, despite the advantages offered by the multi-photon excitation system in enhancing deep tissue imaging resolution. In this study, we report on the intravital tracking of osteoclast activity in three distinct murine bone disease models. We utilized a cathepsin K (CatK)-responsive two-photon fluorogenic probe (CatKP1), which exhibited a notable fluorescence turn-on response in the presence of active CatK. By utilizing CatKP1, we successfully monitored a significant increase in osteoclast activity in hindlimb long bones and its attenuation through pharmacological intervention without sacrificing mice. Thus, our findings highlight the efficacy of CatKP1 as a valuable tool for unraveling pathological osteoclast behavior and exploring novel therapeutic strategies.


Asunto(s)
Enfermedades Óseas , Osteoclastos , Animales , Ratones , Osteoclastos/patología , Catepsina K , Huesos , Enfermedades Óseas/patología , Diagnóstico por Imagen
16.
Angew Chem Int Ed Engl ; 63(14): e202319690, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38320965

RESUMEN

Given the scarcity of novel antibiotics, the eradication of bacterial biofilm infections poses formidable challenges. Upon bacterial infection, the host restricts Fe ions, which are crucial for bacterial growth and maintenance. Having coevolved with the host, bacteria developed adaptive pathways like the hemin-uptake system to avoid iron deficiency. Inspired by this, we propose a novel strategy, termed iron nutritional immunity therapy (INIT), utilizing Ga-CT@P nanocomposites constructed with gallium, copper-doped tetrakis (4-carboxyphenyl) porphyrin (TCPP) metal-organic framework, and polyamine-amine polymer dots, to target bacterial iron intakes and starve them. Owing to the similarity between iron/hemin and gallium/TCPP, gallium-incorporated porphyrin potentially deceives bacteria into uptaking gallium ions and concurrently extracts iron ions from the surrounding bacteria milieu through the porphyrin ring. This strategy orchestrates a "give and take" approach for Ga3+/Fe3+ exchange. Simultaneously, polymer dots can impede bacterial iron metabolism and serve as real-time fluorescent iron-sensing probes to continuously monitor dynamic iron restriction status. INIT based on Ga-CT@P nanocomposites induced long-term iron starvation, which affected iron-sulfur cluster biogenesis and carbohydrate metabolism, ultimately facilitating biofilm eradication and tissue regeneration. Therefore, this study presents an innovative antibacterial strategy from a nutritional perspective that sheds light on refractory bacterial infection treatment and its future clinical application.


Asunto(s)
Infecciones Bacterianas , Galio , Porfirinas , Humanos , Hierro/metabolismo , Hemina/metabolismo , Bacterias/metabolismo , Antibacterianos/metabolismo , Biopelículas , Galio/farmacología , Porfirinas/farmacología , Porfirinas/metabolismo , Infecciones Bacterianas/tratamiento farmacológico , Homeostasis , Iones/metabolismo , Polímeros/metabolismo
17.
J Am Chem Soc ; 145(18): 10082-10091, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37098902

RESUMEN

Boronic acid (or ester) is a well-known temporary masking group for developing anticancer prodrugs responsive to tumoral reactive oxygen species (ROS), but their clinic application is largely hampered by the low activation efficiency. Herein, we report a robust photoactivation approach that can spatiotemporally convert boronic acid-caged iridium(III) complex IrBA into bioactive IrNH2 under hypoxic tumor microenvironments. Mechanistic studies show that the phenyl boronic acid moiety in IrBA is in equilibrium with phenyl boronate anion that can be photo-oxidized to generate phenyl radical, a highly reactive species that is capable of rapidly capturing O2 at extremely low concentrations (down to 0.02%). As a result, while IrBA could hardly be activated by intrinsic ROS in cancer cells, upon light irradiation, the prodrug is efficiently converted into IrNH2 even in limited O2 supply, along with direct damage to mitochondrial DNA and potent antitumor activities in hypoxic 2D monolayer cells, 3D tumor spheroids, and mice bearing tumor xenografts. Of note, the photoactivation approach could be extended to intermolecular photocatalytic activation by external photosensitizers with red absorption and to activate prodrugs of clinic compounds, thus offering a general approach for activation of anticancer organoboron prodrugs.


Asunto(s)
Antineoplásicos , Neoplasias , Profármacos , Humanos , Animales , Ratones , Profármacos/uso terapéutico , Iridio , Especies Reactivas de Oxígeno , Neoplasias/tratamiento farmacológico , Ácidos Borónicos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Microambiente Tumoral
18.
J Am Chem Soc ; 145(11): 6007-6023, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36881923

RESUMEN

Pyroptosis refers to the process of gasdermin-mediated lytic programmed cell death (PCD) characterized by the release of pro-inflammatory cytokines. Our knowledge of pyroptosis has expanded beyond the cellular level and now includes extracellular responses. In recent years, pyroptosis has attracted considerable attention due to its potential to induce host immunity. For instance, at the 2022 International Medicinal Chemistry of Natural Active Ligand Metal-Based Drugs (MCNALMD) conference, numerous researchers demonstrated an interest in photon-controlled pyroptosis activation ("PhotoPyro"), an emerging pyroptosis-engineered approach for activating systemic immunity via photoirradiation. Given this enthusiasm, we share in this Perspective our views on this emerging area and expound on how and why "PhotoPyro" could trigger antitumor immunity (i.e., turning so-called "cold" tumors "hot"). In doing so, we have tried to highlight cutting-edge breakthroughs in PhotoPyro while suggesting areas for future contributions. By providing insights into the current state of the art and serving as a resource for individuals interested in working in this area, it is hoped that this Perspective will set the stage for PhotoPyro to evolve into a broadly applicable cancer treatment strategy.


Asunto(s)
Neoplasias , Piroptosis , Humanos , Apoptosis , Inmunidad , Neoplasias/tratamiento farmacológico
19.
J Am Chem Soc ; 145(8): 4647-4658, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36745678

RESUMEN

Cancer stem cells (CSCs) are associated with the invasion and metastatic relapse of various cancers. However, current cancer therapies are limited to targeting the bulk of primary tumor cells while remaining the CSCs untouched. Here, we report a new proton (H+) modulation approach to selectively eradicate CSCs via cutting off the H+ leaks on the inner mitochondrial membrane (IMM). Based on the fruit extract of Gardenia jasminoides, a multimodal molecule channel blocker with high biosafety, namely, Bo-Mt-Ge, is developed. Importantly, in this study, we successfully identify that mitochondrial uncoupling protein UCP2 is closely correlated with the stemness of CSCs, which may offer a new perspective for selective CSC drug discovery. Mechanistic studies show that Bo-Mt-Ge can specifically inhibit the UCP2 activities, decrease the H+ influx in the matrix, regulate the electrochemical gradient, and deplete the endogenous GSH, which synergistically constitute a unique MoA to active apoptotic CSC death. Intriguingly, Bo-Mt-Ge also counteracts the therapeutic resistance via a two-pronged tactic: drug efflux pump P-glycoprotein downregulation and antiapoptotic factor (e.g., Bcl-2) inhibition. With these merits, Bo-Mt-Ge proved to be one of the safest and most efficacious anti-CSC agents, with ca. 100-fold more potent than genipin alone in vitro and in vivo. This study offers new insights and promising solutions for future CSC therapies in the clinic.


Asunto(s)
Membranas Mitocondriales , Neoplasias , Humanos , Membranas Mitocondriales/metabolismo , Protones , Neoplasias/patología , Células Madre Neoplásicas/metabolismo
20.
Acc Chem Res ; 55(22): 3253-3264, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36323625

RESUMEN

The advent of photochemical techniques has revolutionized the landscape of biology and medical sciences. Especially appealing in this context is photodynamic therapy (PDT), which is a photon-initiated treatment modality that uses cytotoxic reactive oxygen species (ROS) to kill malignant cells. In the past decade, PDT has risen to the forefront of cancer therapy. Its optical control enables noninvasive and spatiotemporal manipulation of the treatment process, and its photoactive nature allows unique patterns to avoid drug resistance to conventional chemotherapeutics. However, despite the impressive advances in this field, achieving widespread clinical adoption of PDT remains difficult. A major concern is that in the hostile tumor microenvironment, tumor cells are hypoxic, which hinders ROS generation during PDT action. To overcome this "Achilles' heel", current strategies focus primarily on the improvement of the intratumoral O2 perfusion, while clinical trials suggest that O2 enrichment may promote cancer cell proliferation and metastasis, thereby making FDA approval and clinical transformation of these paradigms challenging.In an effort to improve hypoxia photodynamic therapy (hPDT) in the clinic, we have explored "low to no O2-dependent" photochemical approaches over the years to combat hypoxia-induced resistance. In this Account, we present our contributions to this theme during the past 5 years, beginning with low O2-dependent approaches (e.g., type I superoxide radical (O2•-) generator, photodynamic O2-economizer, mitochondrial respiration inhibition, cellular self-protective pathway modulation, etc.) and progressing to O2-independent strategies (e.g., autoadaptive PDT/PTT complementary therapy, O2-independent artificial photoredox catalysis in cells). These studies have attracted tremendous attention. Particularly in the pioneering work of 2018, we presented the first demonstration that the O2•--mediated partial O2-recyclability mechanism can overcome PDT resistance ( J. Am. Chem. Soc. 2018, 140, 14851-14859). This launched an era of renewed interest in type I PDT, resulting in a plethora of new O2•- photogenerators developed by many groups around the world. Moreover, with the discovery of O2-independent photoredox reactions in living cells, artificial photoredox catalysis has emerged as a new field connecting photochemistry and biomedicine, stimulating the development of next-generation phototherapeutic tools ( J. Am. Chem. Soc. 2022, 144, 163-173). Our recent work also disclosed that "photoredox catalysis in cells" might be a general mechanism of action of PDT ( Proc. Natl. Acad. Sci. U.S.A. 2022, 119, e2210504119). These emergent concepts, molecular designs, photochemical mechanisms, and applications in cancer diagnosis and therapeutics, as well as pros and cons, are discussed in depth in this Account. It is expected that our contributions to date will be of general use to researchers and inspire future efforts to identify more promising hPDT approaches that better meet the clinical needs of cancer therapy.


Asunto(s)
Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Hipoxia , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA