Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
ASAIO J ; 70(5): 442-450, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38266069

RESUMEN

Normothermic ex vivo lung perfusion (EVLP) can resuscitate marginal lung allografts to increase organs available for transplantation. During normothermic perfusion, cellular metabolism is more active compared with subnormothermic perfusion, creating a need for an oxygen (O 2 ) carrier in the perfusate. As an O 2 carrier, red blood cells (RBCs) are a scarce resource and are susceptible to hemolysis in perfusion circuits, thus releasing cell-free hemoglobin (Hb), which can extravasate into the tissue space, thus promoting scavenging of nitric oxide (NO) and oxidative tissue damage. Fortunately, polymerized human Hb (PolyhHb) represents a synthetic O 2 carrier with a larger molecular diameter compared with Hb, preventing extravasation, and limiting adverse reactions. In this study, a next-generation PolyhHb-based perfusate was compared to both RBC and asanguinous perfusates in a rat EVLP model. During EVLP, the pulmonary arterial pressure and pulmonary vascular resistance were both significantly higher in lungs perfused with RBCs, which is consistent with RBC hemolysis. Lungs perfused with PolyhHb demonstrated greater oxygenation than those perfused with RBCs. Post-EVLP analysis revealed that the PolyhHb perfusate elicited less cellular damage, extravasation, iron tissue deposition, and edema than either RBCs or colloid control. These results show promise for a next-generation PolyhHb to maintain lung function throughout EVLP.


Asunto(s)
Sustitutos Sanguíneos , Hemoglobinas , Trasplante de Pulmón , Perfusión , Ratas Sprague-Dawley , Hemoglobinas/administración & dosificación , Animales , Trasplante de Pulmón/métodos , Trasplante de Pulmón/efectos adversos , Ratas , Perfusión/métodos , Humanos , Sustitutos Sanguíneos/farmacología , Masculino , Pulmón , Oxígeno/metabolismo , Aloinjertos , Hemólisis/efectos de los fármacos , Eritrocitos
2.
J Vis Exp ; (208)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38949382

RESUMEN

Lung transplantation is hampered by the lack of suitable donors. Previously, donors that were thought to be marginal or inadequate were discarded. However, new and exciting technology, such as ex vivo lung perfusion (EVLP), offers lung transplant providers extended assessment for marginal donor allografts. This dynamic assessment platform has led to an increase in lung transplantation and has allowed providers to use donors that were previously discarded, thus expanding the donor pool. Current perfusion techniques use cellular or acellular perfusates, and both have distinct advantages and disadvantages. Perfusion composition is critical to maintaining a homeostatic environment, providing adequate metabolic support, decreasing inflammation and cellular death, and ultimately improving organ function. Perfusion solutions must contain sufficient protein concentration to maintain appropriate oncotic pressure. However, current perfusion solutions often lead to fluid extravasation through the pulmonary endothelium, resulting in inadvertent pulmonary edema and damage. Thus, it is necessary to develop novel perfusion solutions that prevent excessive damage while maintaining proper cellular homeostasis. Here, we describe the application of a polymerized human hemoglobin (PolyhHb)-based oxygen carrier as a perfusate and the protocol in which this perfusion solution can be tested in a model of rat EVLP. The goal of this study is to provide the lung transplant community with key information in designing and developing novel perfusion solutions, as well as the proper protocols to test them in clinically relevant translational transplant models.


Asunto(s)
Hemoglobinas , Trasplante de Pulmón , Pulmón , Perfusión , Animales , Ratas , Trasplante de Pulmón/métodos , Hemoglobinas/química , Perfusión/métodos , Pulmón/metabolismo , Humanos , Oxígeno/metabolismo , Sustitutos Sanguíneos/farmacología , Sustitutos Sanguíneos/química , Masculino , Soluciones Preservantes de Órganos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA